970 resultados para Aerosol transport
Resumo:
Context: Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. Objective: Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. Design: The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. Results: The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5`-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. Conclusions: We described a novel mutation in the 5`-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function. (J Clin Endocrinol Metab 96: E1100-E1107, 2011)
Resumo:
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.
Resumo:
Objective: To evaluate the transepithelial transport of sodium, glucose, potassium, and water and the mRNA level of the sodium-glucose cotransporter (SGLT1) and the facilitated sugar transporter (GLUT2) in the small intestine of iron-deficient rats. Methods: After 6 wk of receiving diets with low or normal iron content, rats (Wistar-EPM) were subjected to two experiments: 1) evaluation of the transepithelial transport of sodium, glucose, potassium, and water by an ""in vivo"" experimental model of intestinal perfusion and 2) determination of relative SGLT1 and GLUT2 mRNA levels in the proximal, intermediate, and distal portions of the small intestine by the northern blotting technique. Results: Hemoglobin and hepatic iron levels were statistically lower in the anemic rats. The mean transepithelial transports of sodium (-33.0 mu Eq . min(-1) . cm(-1)), glucose (426.0 mu M . min(-1) . cm(-1)), and water (0.4 mu L . min(-1) . cm(-1)) in the small intestine of the anemic rats were significantly lower than in the control group (349.1 mu Eq . min(-1) cm(-1), 842.6 mu M . min(-1) . cm(-1), and 4.3 mu l . min(-1) cm(-1), respectively, P < 0.05). The transepithelial transport of potassium was similar for both groups. The relative SGLT1 mRNA levels of the anemic rats in the intermediate (1.796 +/- 0.659 AU) and distal (1.901 +/- 0.766 AU) segments were significantly higher than the values for the control rats (intermediate 1.262 +/- 0.450 AU, distal 1.244 +/- 0.407 AU). No significant difference was observed for the relative SLGT1 mRNA levels in the proximal segment or for the GLUT2 mRNA levels in all segments. Conclusion: Iron deficiency decreases the absorption of glucose, sodium, and water and increases SGLT1 mRNA in the intermediate and distal segments of the small intestine of rats. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na(+) uptake by distal tubules is dependent on Na(+)/H(+). exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H(+)-ATPase and a Cl/HCO(3)(-) exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H(+)-ATPase in series with a basolateral Cl/HCO(3)(-) exchanger, the anion exchanger AE1. Type B IC cells mediate HCO(3)(-) secretion through the apical Cl(-)/HCO(3)(-) exchanger pendrin in series with a H(+)-ATPase at the basolateral membrane. Alternatively, H(+)/K(+)-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.
Resumo:
Aims: The ATP-binding cassette transporters, ABCA1 and ABCG1, are LXR-target genes that play an important role in reverse cholesterol transport. We examined the effects of inhibitors of the cholesterol absorption (ezetimibe) and synthesis (statins) on expression of these transporters in HepG2 cells and peripheral blood mononuclear cells (PBMCs) of individuals with primary (and nonfamilial) hypercholesterolemia (HC). Materials & methods: A total of 48 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) and 23 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg of each/day/4 weeks). Gene expression was examined in statin- or ezetimibe-treated and control HepG2 cells as well as PBMCs using real-time PCR. Results: In PBMCs, statins and ezetimibe downregulated ABCA1 and ABCG1 mRNA expression but did not modulate NR1H2 (LxR-beta) and NR1H3 (LXR-alpha) levels. Positive correlations of ABCA1 with ABCG1 and of NR1H2 with NR1H3 expressions were found in all phases of the treatments. In HepG2 cells, ABCA1 mRNA levels remained unaltered while ABCG1 expression was increased by statin (1.0-10.0 mu M) or ezetimibe (5.0 mu M) treatments. Atorvastatin upregulated NR1H2 and NR1H3 only at 10.0 mu M, meanwhile ezetimibe (1.0-5.0 mu M) downregulated NR1H2 but did not change NR1H3 expression. Conclusion: Our findings reveal that lipid-lowering drugs downregulate ABCA1 and ABCG1 mRNA expression in PBMCs of HC individuals and exhibit differential effects on HepG2 cells. Moreover, they indicate that the ABCA1 and ABCG1 transcript levels were not correlated directly to LXR mRNA expression in both cell models treated with lipid-lowering drugs.
Resumo:
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 mu M and 10 mu M of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 mu M concentrations. Comparing control and REN concentration of 1 mu M, JHCO(3)(-) . nmol cm(-2) s(-1) -1,76 +/- 0.11(control) x 1,29 +/- 0,08(REN) 10 mu m: P<0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 mu M (JHCO(3)(-), nmol cm(-2) s(-1) -0.80 +/- 0.07(control) x 0.60 +/- 0.06(REN) 1 mu m; P<0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na(+)/H(+) exchanger and H(+)-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
P>Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P < 0.05 and P < 0.01, respectively). Twenty-four hours after exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P < 0.001) and costicosterone levels were lower (P < 0.01) than in EX-1. In the soleus, ammonia levels were lower in EX-1 than in SED rats (P < 0.001). After 24 h, glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P < 0.001). Soleus glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P < 0.001). The decrease in plasma glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle.
Resumo:
Organic aerosol (OA) in the atmosphere consists of a multitude of organic species which are either directly emitted or the products of a variety of chemical reactions. This complexity challenges our ability to explicitly characterize the chemical composition of these particles. We find that the bulk composition of OA from a variety of environments (laboratory and field) occupies a narrow range in the space of a Van Krevelen diagram (H: C versus O:C), characterized by a slope of similar to-1. The data show that atmospheric aging, involving processes such as volatilization, oxidation, mixing of air masses or condensation of further products, is consistent with movement along this line, producing a more oxidized aerosol. This finding has implications for our understanding of the evolution of atmospheric OA and representation of these processes in models. Citation: Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi: 10.1029/2010GL042737.
Resumo:
Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug-Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m(-2) s(-1) around noon. An average fine particle flux of 0.05 +/- 0.10 10(6) m(-2) s(-1) was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Asymmetric emission profiles of the stereoisomers of plant-derived volatile organic compounds vary with season, geography, plant type, and stress factors. After oxidation of these compounds in the atmosphere, the low-vapor pressure products ultimately contribute strongly to the particle-phase material of the atmosphere. In order to explore the possibility of stereochemical transfer to atmospheric aerosol particles during the oxidation of biogenic volatile organic compounds, second-order coherent vibrational spectra were recorded of the particle-phase organic material produced by the oxidation of different stereoisomeric mixes of alpha-pinene. The spectra show that the stereochemical configurations are not scrambled but instead are transferred from the gas-phase molecular precursors to the particle-phase molecules. The spectra also show that oligomers formed in the particle phase have a handed superstructure that depends strongly and nonlinearly on the initial stereochemical composition of the precursors. Because the stereochemical mix of the precursors for a material can influence the physical and chemical properties of that material, our findings suggest that chirality is also important for such properties of plant-derived aerosol particles. Citation: Ebben, C. J., S. R. Zorn, S.-B. Lee, P. Artaxo, S. T. Martin, and F. M. Geiger (2011), Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett., 38, L16807, doi: 10.1029/2011GL048599.
Resumo:
Submicron atmospheric particles in the Amazon Basin were characterized by a high-resolution aerosol mass spectrometer during the wet season of 2008. Patterns in the mass spectra closely resembled those of secondary-organic-aerosol (SOA) particles formed in environmental chambers from biogenic precursor gases. In contrast, mass spectral indicators of primary biological aerosol particles (PBAPs) were insignificant, suggesting that PBAPs contributed negligibly to the submicron fraction of particles during the period of study. For 40% of the measurement periods, the mass spectra indicate that in-Basin biogenic SOA production was the dominant source of the submicron mass fraction, contrasted to other periods (30%) during which out-of-Basin organic-carbon sources were significant on top of the baseline in-Basin processes. The in-Basin periods had an average organic-particle loading of 0.6 mu g m(-3) and an average elemental oxygen-to-carbon (O:C) ratio of 0.42, compared to 0.9 mu g m(-3) and 0.49, respectively, during periods of out-of-Basin influence. On the basis of the data, we conclude that most of the organic material composing submicron particles over the Basin derived from biogenic SOA production, a finding that is consistent with microscopy observations made in a concurrent study. This source was augmented during some periods by aged organic material delivered by long-range transport. Citation: Chen, Q., et al. (2009), Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophys. Res. Lett., 36, L20806, doi: 10.1029/2009GL039880.
Resumo:
The aerosol spectral absorption efficiency (alpha(a) in m(2)/g) is measured over an extended wavelength range (350-2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha(a) values (similar to 3m(2)/g at 550 nm) for Sao Paulo samples are 10 times larger than a a values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space. Citation: Martins, J.V., P. Artaxo, Y.J. Kaufman, A.D. Castanho, and L.A. Remer (2009), Spectral absorption properties of aerosol particles from 350-2500nm, Geophys. Res. Lett., 36, L13810, doi: 10.1029/2009GL037435.
Resumo:
For magnetically confined plasmas in tokamaks, we have numerically investigated how Lagrangian chaos at the plasma edge affects the plasma confinement. Initially, we have considered the chaotic motion of particles in an equilibrium electric field with a monotonic radial profile perturbed by drift waves. We have showed that an effective transport barrier may be created at the plasma edge by modifying the electric field radial profile. In the second place, we have obtained escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall with resonant modes due to the action of an ergodic magnetic limiter. For monotonic plasma current density profiles we have obtained distributions of field line connections to the wall and line escape channels with the same spatial pattern as the magnetic footprints on the tokamak walls. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
[1] Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (< 30%) close to the East Asian continent in the North Pacific. For ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble ( Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble ( Fe( II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.