983 resultados para Adelaide, queen consort of William IV, 1792-1849.
Resumo:
In Bacillus subtilis, parE and parC were shown to be essential genes for the segregation of replicated chromosomes. Disruption of either one of these genes resulted in failure of the nucleoid to segregate. Purified ParE and ParC proteins reconstituted to form topoisomerase IV (topo IV), which was highly proficient for ATP-dependent superhelical DNA relaxation and decatenation of interlocked DNA networks. By immunofluorescence microscopy and by directly visualizing fluorescence by using green fluorescence protein fusions, we determined that ParC is localized at the poles of the bacteria in rapidly growing cultures. The bipolar localization of ParC required functional ParE, suggesting that topo IV activity is required for the localization. ParE was found to be distributed uniformly throughout the cell. On the other hand, fluorescence microscopy showed that the GyrA and GyrB subunits of gyrase were associated with the nucleoid. Our results provide a physiologic distinction between DNA gyrase and topo IV. The subcellular localization of topo IV provides physical evidence that it may be part of the bacterial segregation machinery.
Resumo:
Dipeptidyl peptidase IV (EC 3.4.14.5; DPP IV), also known as the leukocyte differentiation antigen CD26 when found as an extracellular membrane-bound proline specific serine protease, cleaves a dipeptide from the N terminus of a polypeptide chain containing a proline residue in the penultimate position. Here we report that known (Z)-Ala-ψ[CF=C]-Pro dipeptide isosteres 1 and 2, which contain O-acylhydroxylamines, were isolated as diastereomeric pairs u-1, l-1, and l-2. The effect of each diastereomeric pair as an inhibitor of human placental dipeptidyl peptidase DPP IV has been examined. The inhibition of DPP IV by these compounds is rapid and efficient. The diastereomeric pair u-1 exhibits very potent inhibitory activity with a Ki of 188 nM. Fluoroolefin containing N-peptidyl-O-hydroxylamine peptidomimetics, by virtue of their inhibitory potency and stability, are superior to N-peptidyl-O-hydroxylamine inhibitors derived from an Ala-Pro dipeptide.
Resumo:
The activity of l-type Ca2+ channels is increased by dihydropyridine (DHP) agonists and inhibited by DHP antagonists, which are widely used in the therapy of cardiovascular disease. These drugs bind to the pore-forming α1 subunits of l-type Ca2+ channels. To define the minimal requirements for DHP binding and action, we constructed a high-affinity DHP receptor site by substituting a total of nine amino acid residues from DHP-sensitive l-type α1 subunits into the S5 and S6 transmembrane segments of domain III and the S6 transmembrane segment of domain IV of the DHP-insensitive P/Q-type α1A subunit. The resulting chimeric α1A/DHPS subunit bound DHP antagonists with high affinity in radioligand binding assays and was inhibited by DHP antagonists with high affinity in voltage clamp experiments. Substitution of these nine amino acid residues yielded 86% of the binding energy of the l-type α1C subunit and 92% of the binding energy of the l-type α1S subunit for the high-affinity DHP antagonist PN200–110. The activity of chimeric Ca2+ channels containing α1A/DHPS was increased 3.5 ± 0.7-fold by the DHP agonist (−)Bay K8644. The effect of this agonist was stereoselective as in l-type Ca2+ channels since (+) Bay K8644 inhibited the activity of α1A/DHPS. The results show conclusively that DHP agonists and antagonists bind to a single receptor site at which they have opposite effects on Ca2+ channel activity. This site contains essential components from both domains III and IV, consistent with a domain interface model for binding and allosteric modulation of Ca2+ channel activity by DHPs.
Resumo:
We have demonstrated that, in Escherichia coli, quinolone antimicrobial agents target topoisomerase IV (topo IV). The inhibition of topo IV becomes apparent only when gyrase is mutated to quinolone resistance. In such mutants, these antibiotics caused accumulation of replication catenanes, which is diagnostic of a loss of topo IV activity. Mutant forms of topo IV provided an additional 10-fold resistance to quinolones and prevented drug-induced catenane accumulation. Drug inhibition of topo IV differs from that of gyrase. (i) Wild-type topo IV is not dominant over the resistant allele. (ii) Inhibition of topo IV leads to only a slow stop in replication. (iii) Inhibition of topo IV is primarily bacteriostatic. These differences may result from topo IV acting behind the replication fork, allowing for repair of drug-induced lesions. We suggest that this and a slightly higher intrinsic resistance of topo IV make it secondary to gyrase as a quinolone target. Our results imply that the quinolone binding pockets of gyrase and topo IV are similar and that substantial levels of drug resistance require mutations in both enzymes.
Resumo:
A brief one-page note from Croswell resigning from the South Grammar School.
Resumo:
This folder contains six documents: three drafts of a brief March 10, 1817, note to Harvard President John Kirkland, with two of the drafts followed by an October 25, 1819, note to the Harvard College Corporation concerning Croswell's work on Harvard's Library Catalogue.
Resumo:
Draft of a brief letter complaining about students.
Resumo:
Document containing a draft of a letter regarding Croswell's work on cubic equations and notes for some additional letters.
Resumo:
Paper notebook containing copies of letters sent by Croswell to the Harvard Corporation in relation to his work on the Harvard Library Catalogue.
Resumo:
Two drafts of a letter.
Resumo:
Five drafts of a letter.
Resumo:
Draft of a letter accompanied by two copies of a statement of money received from the Pemberton Fund.