990 resultados para Active silica
Resumo:
Some heterogeneous catalysts, cupric oxide supported on different supports, were prepared and employed to catalyze the cyclopropanation of styrene and 2,5-dimethyl-2,4-hexadiene with ethyl diazoacetate (EDA). The catalytic performance for cyclopropanation strongly depends on the nature of the support. A novel catalyst, CUO/TiO2-Al2O3, in which Al2O3 is modified with a monolayer TiO2, is found to be most active and selective for the cyclopropanation reaction. The yields of 93 and 94% cyclopropanes are obtained for styrene and 2,5-dimethyl-2,4-hexadiene at 40 degreesC as the substrates, respectively. The activity and selectivity in cyclopropanes are optimized with a monolayer dispersion of cupric oxide on the corresponding supports. (C) 2002 Elsevier Science B.V. All rights reserved.
In situ IR spectroscopic studies on molybdenum nitride catalysts: active sites and surface reactions
Resumo:
Recent IR spectroscopic studies on the surface properties of fresh Mo2N/gamma-Al2O3 catalyst are presented in this paper. The surface sites of fresh Mo2N/gamma-Al2O3, both Modelta+ (0<δ<2) and N sites, are probed by CO adsorption. Two characteristic IR bands were observed at 2045 and 2200 cm(-1), due to linearly adsorbed CO on Mo and N sites, respectively. The surface N sites are highly reactive and can react with adsorbed CO to form NCO species. Unlike adsorbed CO on reduced passivated one, the adsorbed CO on fresh Mo2N/gamma-Al2O3 behaves similarly to that of group VIII metals, suggesting that fresh nitride resembles noble metals. It is found that the surface of Mo nitrides slowly transformed into sulfide under hydrotreating conditions, which could be the main reason for the activity drop of molybdenum nitride catalysts in the presence of sulfur-containing species. Some surface reactions, such as selective hydrogenation of 1,3-butadiene, isomerization of 1-butene, and hydrodesulfurization of thiophene, were studied on both fresh and reduced passivated Mo2N/gammaAl(2)O(3) catalysts using IR spectroscopy. The mechanisms of these reactions are proposed. The adsorption and reaction behaviors of these molecules on fresh molybdenum nitride also resemble those on noble metals, manifesting the unique properties of fresh molybdenum nitride catalysts. Mo and N sites are found to play different roles in the adsorption and catalytic reactions on the fresh Mo2N/gammaAl(2)O(3) catalyst. Generally, Mo sites are the main active sites for the adsorption and reactions of adsorbates; N sites are not directly involved in catalytic reactions but they modify the electronic properties of Mo sites.
Resumo:
Porous silicon powder and silica gel particles have been applied as inorganic matrices for the analysis of small molecules in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS). In contrast to conventional MALDI-TOFMS, the signal interference of low-molecular analytes by the matrix has been eliminated. Almost no fragmentations of the analytes were observed. Effects of various factors, such as the particle and pore size, the suspending solution, and sample preparation procedures, on the intensity of mass spectra have been investigated. The pore structure of the inorganic matrix and penetration of the analytes into the pores must be optimized for effective desorption and ionization of the analytes. Matrices (DHB and HCCA) were covalently bound to silica gel for improvement of spectrum intensity. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Active appearance model (AAM) is a powerful generative method for modeling deformable objects. The model decouples the shape and the texture variations of objects, which is followed by an efficient gradient-based model fitting method. Due to the flexible and simple framework, AAM has been widely applied in the fields of computer vision. However, difficulties are met when it is applied to various practical issues, which lead to a lot of prominent improvements to the model. Nevertheless, these difficulties and improvements have not been studied systematically. This motivates us to review the recent advances of AAM. This paper focuses on the improvements in the literature in turns of the problems suffered by AAM in practical applications. Therefore, these algorithms are summarized from three aspects, i.e., efficiency, discrimination, and robustness. Additionally, some applications and implementations of AAM are also enumerated. The main purpose of this paper is to serve as a guide for further research.
Resumo:
We described the use of silica nanoparticles as building blocks for the immobilization of electrogenerated chemiluminescence (ECL) reagent Ru(bpy)3" and the fabrication of layer-by-layer assembly film by alternating the deposition of the Ru(bpy)3 2'-doped silica nanoparticles and Au nanoparticles.
Resumo:
[Ru(bpy)(3)](2+)-doped silica (RuSi) nanoparticles were synthesized by using a water/oil microemulsion method. Stable electrochemiluminescence (ECL) was obtained when the RuSi nanoparticles were immobilized on a glassy carbon electrode by using tripropylamine (TPA) as a coreactant. Furthermore, the ECL of the RuSi nanoparticles with layer-by-layer biomolecular coatings was investigated. Squential self-assembly of the polyelectrolytes and biomolecules on the RuSi nanoparticles gave nanocomposite suspensions, the ECL of which decreased on increasing the number of bilayers.
Resumo:
Spherical Ru(bpy)(3)(2+)-doped silica (RuSi) nanoparticles were prepared via a water-in-oil microemulsion approach. The electrochemical and electrochemiluminescent properties of the RuSi nanoparticles immobilized on an indium tin oxide (ITO) electrode were investigated. Further, electrochemiluminescence (ECL) of the RuSi nanoparticles with covalently coated biomacromolecules was studied. By covalent cross-linking with glutaraldehyde, gamma-(aminopropyl) triethoxysilane (APTES)-pretreated RuSi nanoparticles were coupled with different concentrations of bovine serum albumin (BSA), hemoglobin, and myoglobin, respectively.
Resumo:
Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:EU3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+ were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption, and photoluminescence (PL) spectra, respectively.
Resumo:
CeF3:Tb3+ nanoparticles were successfully prepared by a polyol process using diethylene glycol ( DEG) as solvent. After being coated with dense silica, these CeF3:Tb3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 ( P 123) as structure-directing agent. The composite can load ibuprofen and release the drug in the PBS. The composite was characterized by X-ray diffraction ( XRD), transmission electron microscopy ( TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively.
Resumo:
Initially, pore walls of mesoporous silica SBA-15 with template were modified with chlorotrimethylsilane. Then imidazolium salts were similarly incorporated covalently in the inner pore walls of mesoporous silica SBA-15 albeit without the template. Finally, palladium salts were introduced into the pore channels of the previously processed mesoporous silica via electrostatic interaction. The resulting palladium catalysts demonstrated exceptional activity for the room-temperature Suzuki Coupling reaction in aqueous-organic mixed solvents and good recycling ability for at least 4-6 times.