933 resultados para Active Geothermal Systems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show:  Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load.  There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures.  The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases.  The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.