997 resultados para Acetylene Block Technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the impact of imperfect synchronisation on D-STBC when combined with incremental relay. To suppress such an impact, a novel detection scheme is proposed, which retains the two key features of the STBC principle: simplicity (i.e. linear computational complexity), and optimality (i.e. maximum likelihood). These two features make the new detector very suitable for low power wireless networks (e.g. sensor networks).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronised. Since such an assumption is difficult to achieve in many practical systems, this paper proposes a simple yet optimum detector for the case of two relay nodes, which proves to be much more robust against timing misalignment than the conventional STBC detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on distributed space time block coding (STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. By applying STBC to 3-or 4-relay node systems, this paper shows that imperfect synchronisation causes significant performance degradation to the conventional detector. To this end, we propose a new STBC detection solution based on the principle of parallel interference cancellation (PIC). The PIC detector is moderate in computational complexity but is very effective in suppressing the impact of imperfect synchronisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and practical technique for assessing the risks, that is, the potential for error, and consequent loss, in software system development, acquired during a requirements engineering phase is described. The technique uses a goal-based requirements analysis as a framework to identify and rate a set of key issues in order to arrive at estimates of the feasibility and adequacy of the requirements. The technique is illustrated and how it has been applied to a real systems development project is shown. How problems in this project could have been identified earlier is shown, thereby avoiding costly additional work and unhappy users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a clocking pipeline technique referred to as a single-pulse pipeline (PP-Pipeline) and applies it to the problem of mapping pipelined circuits to a Field Programmable Gate Array (FPGA). A PP-pipeline replicates the operation of asynchronous micropipelined control mechanisms using synchronous-orientated logic resources commonly found in FPGA devices. Consequently, circuits with an asynchronous-like pipeline operation can be efficiently synthesized using a synchronous design methodology. The technique can be extended to include data-completion circuitry to take advantage of variable data-completion processing time in synchronous pipelined designs. It is also shown that the PP-pipeline reduces the clock tree power consumption of pipelined circuits. These potential applications are demonstrated by post-synthesis simulation of FPGA circuits. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKID estimate with comparable accuracy to that of the full-sample optimised PW density estimate. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tremor is a clinical feature characterized by oscillations of a part of the body. The detection and study of tremor is an important step in investigations seeking to explain underlying control strategies of the central nervous system under natural (or physiological) and pathological conditions. It is well established that tremorous activity is composed of deterministic and stochastic components. For this reason, the use of digital signal processing techniques (DSP) which take into account the nonlinearity and nonstationarity of such signals may bring new information into the signal analysis which is often obscured by traditional linear techniques (e.g. Fourier analysis). In this context, this paper introduces the application of the empirical mode decomposition (EMD) and Hilbert spectrum (HS), which are relatively new DSP techniques for the analysis of nonlinear and nonstationary time-series, for the study of tremor. Our results, obtained from the analysis of experimental signals collected from 31 patients with different neurological conditions, showed that the EMD could automatically decompose acquired signals into basic components, called intrinsic mode functions (IMFs), representing tremorous and voluntary activity. The identification of a physical meaning for IMFs in the context of tremor analysis suggests an alternative and new way of detecting tremorous activity. These results may be relevant for those applications requiring automatic detection of tremor. Furthermore, the energy of IMFs was visualized as a function of time and frequency by means of the HS. This analysis showed that the variation of energy of tremorous and voluntary activity could be distinguished and characterized on the HS. Such results may be relevant for those applications aiming to identify neurological disorders. In general, both the HS and EMD demonstrated to be very useful to perform objective analysis of any kind of tremor and can therefore be potentially used to perform functional assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general packet radio service (GPRS) has been developed to allow packet data to be transported efficiently over an existing circuit-switched radio network, such as GSM. The main application of GPRS are in transporting Internet protocol (IP) datagrams from web servers (for telemetry or for mobile Internet browsers). Four GPRS baseband coding schemes are defined to offer a trade-off in requested data rates versus propagation channel conditions. However, data rates in the order of > 100 kbits/s are only achievable if the simplest coding scheme is used (CS-4) which offers little error detection and correction (EDC) (requiring excellent SNR) and the receiver hardware is capable of full duplex which is not currently available in the consumer market. A simple EDC scheme to improve the GPRS block error rate (BLER) performance is presented, particularly for CS-4, however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel and improving the user's application data rate. As GPRS requires intensive processing in the baseband, a viable field programmable gate array (FPGA) solution is presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parallel interference cancellation (PIC) detection scheme is proposed to suppress the impact of imperfect synchronisation. By treating as interference the extra components in the received signal caused by timing misalignment, the PIC detector not only offers much improved performance but also retains a low structural and computational complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant performance gain can potentially be achieved by employing distributed space-time block coding (D-STBC) in ad hoc or mesh networks. So far, however, most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronized. Considering the difficulty in meeting such an assumption in many practical systems, this paper proposes a simple and near-optimum detection scheme for the case of two relay nodes, which proves to be able to handle far greater timing misalignment than the conventional STBC detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on Distributed Space-Time Block Coding (D-STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. This paper applies STBC to 4-relaynode systems under quasi-synchronisation and derives a new detector based on parallel interference cancellation, which proves to be very effective in suppressing the impact of imperfect synchronisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the numerical efficiency of solving the self-consistent field theory (SCFT) for periodic block-copolymer morphologies by combining the spectral method with Anderson mixing. Using AB diblock-copolymer melts as an example, we demonstrate that this approach can be orders of magnitude faster than competing methods, permitting precise calculations with relatively little computational cost. Moreover, our results raise significant doubts that the gyroid (G) phase extends to infinite $\chi N$. With the increased precision, we are also able to resolve subtle free-energy differences, allowing us to investigate the layer stacking in the perforated-lamellar (PL) phase and the lattice arrangement of the close-packed spherical (S$_{cp}$) phase. Furthermore, our study sheds light on the existence of the newly discovered Fddd (O$^{70}$) morphology, showing that conformational asymmetry has a significant effect on its stability.