934 resultados para ATP-diphosphohydrolase
Resumo:
Com o objetivo de verificar o efeito da adição de níveis crescentes de óleo no concentrado sobre a atividade plasmática das enzimas creatina quinase (CK), aspartato aminotransferase (AST) e lactato desidrogenase (LDH) como indicativo de metabolismo energético, foram fornecidas dietas experimentais compostas de cinco níveis de óleo (controle, 6, 12, 18 e 24% do concentrado). Utilizaram-se 20 equinos da raça Árabe, peso médio de 400 kg, submetidos a prova de enduro de 80 km em esteira rolante. O enduro foi dividido em quatro anéis de 20 km, com duração média de 1 hora e dez minutos. A adição de óleo e a distância percorrida tiveram efeitos sobre as variáveis AST, CK e LDH, que apresentaram as respectivas expressões: AST (7,045-0,2292x+0,007991x2+0,008517z- 0,0003282xz), CK (8,06-,07020x+0,05546x2-0,001262x3+0,01204z+0,0006207xz) e LDH (6,624-0,3522x+0,03448x2-0,0008382x3+0,02401z-0,0007489xz) . O óleo é uma importante e bem aproveitada fonte de energia para equinos em exercício, pois sua adição na dieta de animais submetidos a prova de enduro promoveu alteração metabólica que favorece a produção de energia. O metabolismo animal poupou suas reservas energéticas oriundas da glicose, favorecendo a utilização do óleo. A menor atividade plasmática das enzimas AST, CK e LDH com a adição de óleo nas dietas indica direcionamento do metabolismo energético para a β-oxidação. Como apresentam várias isoenzimas, as enzimas estudadas atuam amplamente no metabolismo energético, favorecendo a constante reposição de ATP ao longo do exercício.
Resumo:
1. The role of beta(2)-agonist and of cAMP in chick skeletal muscle proteolytic pathways and protein synthesis was investigated using an in vitro preparation that maintains tissue glycogen stores and metabolic activity for several hours.2. In extensor digitorum longus (EDL) muscle total proteolysis decreased by 15 to 20% in the presence of equimolar concentrations of epinephrine, clenbuterol, a selective beta(2)-agonist, or dibutyryl-cAMP. Rates of protein synthesis were not altered by clenbuterol or dibutyryl-cAMP.3. The decrease in the rate of total protein degradation induced by 10(-5) M clenbuterol was paralleled by a 44% reduction in Ca2+-dependent proteolysis, which was prevented by 10(-5) M ICI 118.551, a selective beta(2)-antagonist.4. No change was observed in the activity of the lysosomal, ATP-dependent, and ATP-independent proteolytic systems. Ca2+-dependent proteolytic activity was also reduced by 58% in the presence of 10(-4) M dibutyryl-cAMP or isobutylmethylxanthine.5. The data suggest that catecholamines exert an inhibitory control of Ca2+-dependent proteolysis in chick skeletal muscle, probably mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.
Resumo:
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.
Resumo:
Roscovitine and flavopiridol have been shown to potently inhibit cyclin-dependent kinase 1 and 2 (CDK1 and 2). The structures of CDK2 complexed with roscovitine and deschoroflavopiridol have been reported, however no crystallographic structure is available for complexes of CDK1 with inhibitors. The present work describes two molecular models for the binary complexes CDK1:roscovitine and CDK1:flavopiridol. These structural models indicate that both inhibitors strongly bind to the ATP-binding pocket of CDKI and structural comparison of the CDK complexes correlates the structures with differences in inhibition of these CDKs by flavopiridol and roscovitine. This article explains the structural basis for the observed differences in activity of these inhibitors. (C) 2004 Elsevier B.V. All rights reserved.