952 resultados para ALKENE POLYMERIZATION
Resumo:
A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA-PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA-PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly(L-lactide)-poly(ethylene-glycol) (PLLA-PEG) and poly(D-lactide)-poly(ethylene-glycol) (PDLA-PEG) were synthesized by the ring-opening polymerization of L-lactide and D-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA-PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8-4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer.Compared with the single PLLA-PEG or PDLA PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application.
Resumo:
The triblock copolymers, poly(styrene-b-isoprene-b-epsilon-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential- anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 mu m s(-1), respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL-(28) show the columns morphology formed by it's self-assembling.
Resumo:
A novel biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-based polyurethanes (PCL-PEG-PU) with pendant amino groups was synthesized by direct coupling of PEG ester of NH2-protected-(aspartic acid) (PEG-Asp-PEG diols) and poly(epsilon-caprolactone) (PCL) diols with hexamethylene dissocyanate (HDI) under mild reaction conditions and by subsequent deprotection of benzyloxycarbonyl (Cbz) groups. GPC, H-1 NMR, and C-13 NMR studies confirmed the polymer structures and the complete deprotection. DSC and WXRD results indicated that the crystallinity of the copolymer was enhanced with increasing PCL diols in the copolymer. The content of amino group in the polymer could be adjusted by changing the molar ratio of PEG-Asp-PEG diols to PCL diols. Thus the results of this study provide a good way to prepare polyurethanes bearing hydrophilic PEG segments and reactive amino groups without complicated synthesis.
Resumo:
Polypeptide/polysaccharide graft copolymers poly(L-lysine)-graft-chitosan (PLL-g-Chi) were prepared by ring-opening polymerization (ROP) of epsilon-benzoxycarbonyl L-lysine N-carboxyanhydrides (Z-L-lysine NCA) in the presence of 6-O-triphenylmethyl chitosan. The PLL-g-Chi copolymers were thoroughly characterized by H-1 NMR, C-13 NMR, Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). The number-average degree of polymerization of PLL grafted onto the chitosan backbone could be adjusted by controlling the feed ratio of NCA to 6-O-triphenylmethyl chitosan. The particle size of the complexes formed from the copolymer and calf thymus DNA was measured by dynamic light scattering (DLS). It was found in the range of 120 similar to 340 nm. The gel retardation electrophoresis showed that the PLL-g-Chi copolymers possessed better plasmid DNA-binding ability than chitosan. The gene transfection effect in HEK 293T cells of the copolymers was evaluated, and the results showed that the gene transfection ability of the copolymer was better than that of chitosan and was dependent on the PLL grafting ratio. The PLL-g-Chi copolymers could be used as effective gene delivery vectors.
Resumo:
Novel poly(ester carbonate)s were synthesized by the ring-opening polymerization Of L-lactide and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraoxaspiro[5,5]undecan-3-one derived from pentaerythritol with diethyl zinc as an initiator. H-1 NMR analysis revealed that the carbonate content in the copolymer was almost equal to that in the feed. DSC results indicated that T-g of the copolymer increased with increasing carbonate content in the copolymer. Moreover, the protecting benzylidene groups in the copolymer poly(L-lactide-co-9-phenyl-2,4,8,10-tetraoxaspiro[5,5]undecan-3-one) were removed by hydrogenation with palladium hydroxide on activated charcoal as a catalyst to give a functional copolymer, poly(L-lactide-co-2,2-dihydroxylmethyl-propylene carbonate), containing pendant primary hydroxyl groups. Complete deprotection was confirmed by H-1 NMR and FTIR spectroscopy. The in vitro degradation rate of the deprotected copolymers was faster than that of the protected copolymers in the presence of proteinase K. The cell morphology and viability on a copolymer film evaluated with ECV-304 cells showed that poly(ester carbonate)s derived from pentaerythritol are good biocompatible materials suitable for biomedical applications.
Resumo:
A novel biodegradable triblock copolymer poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) (PEG-PLA-PLL) was synthesized by acidolysis of poly(ethylene glycol)-b-poly(L-lactide)-b-poly(F-benzyloxycarbonyl-L-lysine) (PEG-PLA-PZLL) obtained by the ring-opening polymerization (ROP) of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride (ZLys NCA) with amino-terminated PEG-PLA-NH2 as a macro-initiator, and the pendant amino groups of the lysine residues were modified with a peptide known to modulate cellular functions, Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) in the presence of 1,1'-carbonyldiimidazole (CDI). The structures of PEG-PLA-PLL/RGD and its precursors were confirmed by H-1 NMR, FT-IR, amino acid analysis and XPS analysis. The cell adhesion and cell spread on the PEG-PLA-PLL/RGD film were enhanced compared to those on pure PLA film. Therefore, the novel RGD-grafted triblock copolymer is promising for cell or tissue engineering applications. Both copolymers PEG-PLA-PZLL and PEG-PLA-PLL showed an amphiphilic nature and could self-assemble into micelles of homogeneous spherical morphology. The micelles were determined by fluorescence technique, dynamic light scattering (DLS), and field emission scanning electron microscopy (ESEM) and could be expected to find application in drug and gene delivery systems.
Resumo:
A series of segmented poly (L-lactide)-polyurethanes (PLA-PU) were synthesized by a two-step method, with oligo-poly(L-lactide) (PLA) as the soft segments and the reaction product of 2,4-toluene diisocyanate(TDI) and ethylene glycol(EG) as the hard segments. The shape memory properties of PLA-PUs were examined. The processed PLA-PUs could recover almost 100% to their original shape within 10 degrees C from the lowest recovery temperature. In the recovery process, the PLA-PUs showed a maximum contracting stress of shape change in the range of 1.5-4 MPa depending on the PLA segmental length and the hard-segmental content and higher than that of poly (e-caprolactone polyurethane) (PCL-PU). Besides, the influence of deforming and fixing temperatures on shape memory properties of PLA-PU was studied in detail. They could affect not only the recovery temperature but also the maximum contracting stress. The experiments of cell incubation were used to evaluate the biocompatibility of PLA-PU. The results show that the biocompatibility of PLA-PU is comparable to that of the pure PLA. This kind of polyurethane can be used as implanted medical devices with a shape memory property.
Resumo:
This review deals with polyimides based on isomeric dianhydrides and diamines, and with chiral polyimides. First, however, a summary is presented of recent work on the synthesis of isomeric dianhydrides, the reaction of mellophanic dianhydride with diamines, and the tendency toward cyclization in reactions of some dianhydrides and diamines. Then turning to polymers, the discussion covers solubility, thermal and dielectric properties, permeability and permselectivity for gas separation, and rheology of isomeric polyimides. Several useful general rules have been found: i.e. the glass transition temperature of polyimides based on isomeric dianhydrides with a given diamine decreases in the order 3,3'- > 3,4'- > 4,4-dianhydride if the polymers are of comparable molecular weight, whereas the thermal stability and the T-beta/T-g ratio (in absolute temperatures) increase in the order of 3,3'- < 3,4'- < 4,4'-dianhydride. Polyimides from 3,3'- or 3,4'-dianhydride have higher solubility than those from 4,4'-dianhydride. Polyimides from 3,4'-dianhydrides exhibit much lower melt viscosity than those from the other isomeric anhydrides. The dielectric constants of polyimides derived from m,m'-diamines are lower than those from p,p'-diamines. Polyimides based on 3,3'- or 3,4'-dianhydrides have higher permeability and slightly lower permselectivity than polyimides based on 4,4'-dianhydrides.
Resumo:
A one-step method has been developed for synthesizing gold-polyaniline (Au@PANI) core-shell particles by using chlorauric acid (HAuCl4) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au@PANI particles was also proposed based on the results of control experiments.
Resumo:
inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO3 and H4SiW12O40 aqueous solutions. Repeating the above synthesis process, Ag4SiW12O40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles.
Resumo:
The bifunctional comonomer 4-(3-butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c-PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c-PS microspheres (PS-g-PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c-PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS-g-PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c-PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c-PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c-PS microspheres was 6 degrees C higher than that of pure PE. The c-PS microspheres decorated by PE chains had a better compatibility with PE matrix.
Resumo:
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macrorners were characterized by H-1 NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.
Resumo:
The crystalline syndiotatic 1,2-polybutadiene was synthesized with a catalyst consisting of iron acetylacetonate (Fe(acac)(3))-triisobutylaluminum (Al(i-Bu)(3))-diethyl phosphite (DEP), and the effects of crystal growth conditions on morphology of thin films of the polymer were investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The polymer with melting point 179 degreesC was found to have 89.3% 1,2-content and 86.5% syndiotacticity by C-13 NMR measurement. The results of electron microscopic studies indicate that the solution-cast thin films of the syndiotatic 1,2-polybutadiene consist of lath-like lamellae with the c-axis perpendicular to the film plane, while a- and b-axes are in the film plane. The morphology of isothermally crystallized thin films of the polymer is temperature dependent. At lower crystallization temperatures (130 degreesC), a spherulitic structure consisting of flat-on lamellae is formed. With an increase in the crystallization temperature (e.g., at 140 degreesC), the spherulites and single faceted crystals coexist. At higher crystallization temperatures (150 degreesC), single crystals with a hexagonal prismatic shape are produced.
Resumo:
Properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were significantly modified by a hydrogen bonding (H-bond) monomer-bisphenol A (BPA). BPA lowered the T-m of PHBV and widened the heat-processing window of PHBV. At the same time, a dynamic H-bond network in the blends was observed indicating that BPA acted as a physical cross-link agent. BPA enhanced the T, of PHBV and reduced the crystallization rate of PHBV. It resulted in larger crystallites in PHBV/BPA blends showed by WAXD. However, the crystallinity of PHBV was hardly reduced. SAXS results suggested that BPA molecules distributed in the inter-lamellar region of PHBV. Finally, a desired tension property was obtained, which had an elongation at break of 370% and a yield stress of 16 MPa. By comparing the tension properties of PHBV/BPA and PHBV/tert-butyl phenol blends, it was concluded that the H-bond network is essential to the improvement of ductility.