984 resultados para ACUTE RETINAL NECROSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the long-term consistency of individual differences in dairy cattles’ responses in tests of behavioural and hypothalamo–pituitary–adrenocortical (HPA) axis reactivity, as well as the relationship between responsiveness in behavioural tests and the reaction to first milking. Two cohorts of heifer calves, Cohorts 1 (N = 25) and 2 (N = 16), respectively, were examined longitudinally from the rearing period until adulthood. Cohort 1 heifers were subjected to open field (OF), novel object (NO), restraint, and response to a human tests at 7 months of age, and were again observed in an OF test during first pregnancy between 22 and 24 months of age. Subsequently, inhibition of milk ejection and stepping and kicking behaviours were recorded in Cohort 1 heifers during their first machine milking. Cohort 2 heifers were individually subjected to OF and NO tests as well as two HPA axis reactivity tests (determining ACTH and/or cortisol response profiles after administration of exogenous CRH and ACTH, respectively) at 6 months of age and during first lactation at approximately 29 months of age. Principal component analysis (PCA) was used to condense correlated response measures (to behavioural tests and to milking) within ages into independent dimensions underlying heifers’ reactivity. Heifers demonstrated consistent individual differences in locomotion and vocalisation during an OF test from rearing to first pregnancy (Cohort 1) or first lactation (Cohort 2). Individual differences in struggling in a restraint test at 7 months of age reliably predicted those in OF locomotion during first pregnancy in Cohort 1 heifers. Cohort 2 animals with high cortisol responses to OF and NO tests and high avoidance of the novel object at 6 months of age also exhibited enhanced cortisol responses to OF and NO tests at 29 months of age. Measures of HPA axis reactivity, locomotion, vocalisation and adrenocortical and behavioural responses to novelty were largely uncorrelated, supporting the idea that stress responsiveness in dairy cows is mediated by multiple independent underlying traits. Inhibition of milk ejection and stepping and kicking behaviours during first machine milking were not related to earlier struggling during restraint, locomotor responses to OF and NO tests, or the behavioural interaction with a novel object. Heifers with high rates of OF and NO vocalisation and short latencies to first contact with the human at 7 months of age exhibited better milk ejection during first machine milking. This suggests that low underlying sociality might be implicated in the inhibition of milk ejection at the beginning of lactation in heifers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cough is one of the most common symptoms that patients bring to the attention of primary care clinicians. Cough can be designated as acute ( 8 weeks in duration). The use of the term 'prolonged acute cough' in a cough guideline allows a period of natural resolution to occur before further investigations are warranted. The common causes are in children with post viral or pertussis like illnesses causing the cough. Persistent bacterial bronchitis typically occurs when an initial dry acute cough due to a viral infection becomes a prolonged wet cough remaining long after the febrile illness has resolved. This cough responds to a completed course of appropriate antibiotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant genotypic difference in response to arsenate toxicity in rice (Oryza sativa) was investigated in root elongation, arsenate uptake kinetics, physiological and biochemical response and arsenic (As) speciation. Uptake kinetics data showed that P-deprived genotype 94D-54 had a little higher As uptake than P-deprived 94D-64, but the difference was not large enough to cause acute toxicity in P-deprived 94D-54. There was no difference in tissue P concentrations between the two genotypes under P deficient conditions. In addition, arsenic speciation in plant tissues (using high performance liquid chromatography-inductively coupled plasma mass spectrometry) was not different between P pretreatments and between genotypes. P-deprived genotype 94D-54 suffered much higher stress induced by arsenate toxicity than P-deprived genotype 94D-64, in terms of lipid peroxidation, tissue H2O2 concentrations and exosmosis of K, P and As. However, P-deprived 94D-54 also had higher overproduction of enzymatic antioxidants (with higher GPX, SOD, CAT) and NPT (non-protein thiols) than P-deprived 94D-64. It appeared that, the higher sensitivity of P-deprived 94D-54 to arsenate toxicity might cause the overproduction of NPT, thus leading to the depletion of GSH and to the accumulation of H2O2. The differential sensitivity of the two genotypes has major implications for breeding rice for As affected paddy soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Vascular endothelial growth factor (VEGF)-A and placental growth factor (PIGF) are members of a large group of homologous peptides identified as the VEGF family. Although VEGF-A is known to act as a potent angiogenic peptide in the retina, the vasoactive function of PIGF in this tissue is less well defined. This study has sought to elucidate the expression patterns and modulatory role of these growth factors during retinal vascular development and hyaloid regression in the neonatal mouse. METHODS. C57BL6J mice were killed at postnatal days (P)1, P3, P5, P7, P9, and P11. The eyes were enucleated and processed for in situ hybridization and immunocytochemistry and the retinas extracted for total protein or RNA. Separate groups of neonatal mice were also injected intraperitoneally daily from P2 through P9 with either VEGF-neutralizing antibody, PIGF-neutralizing antibody, isotype immunoglobulin (Ig)-G, or phosphate-buffered saline (PBS). The mice were then perfused with fluorescein isothiocyanate (FITC)-dextran, and the eyes were subsequently embedded in paraffin wax or flat mounted. RESULTS. Quantitative (real-time) reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar expression patterns of VEGF-A and PIGF mRNA during neonatal retinal development, although the fluctuation between time periods was greater overall for VEGF-A. The localization of VEGF-A and PIGF in the retina, as revealed by in situ hybridization and immunohistochemistry, was also similar. Neutralization of VEGF-A caused a significant reduction in the hyaloid and retinal vasculature, whereas PIGF antibody treatment caused a marked persistence of the hyaloid without significantly affecting retinal vascular development. CONCLUSIONS. Although having similar expression patterns in the retina, these growth factors appear to have distinct modulatory influences during normal retinal vascular development and hyaloid regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown.

Methods: In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavilyoxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate
experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL.

Results: ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures.

Conclusions/interpretation: In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: In previous studies we have shown that extravasated, modified LDL is associated with pericyte loss, an early feature of diabetic retinopathy (DR). Here we sought to determine detailed mechanisms of this LDLinduced pericyte loss.

Methods: Human retinal capillary pericytes (HRCP) were exposed to ‘highly-oxidised glycated’ LDL (HOG-LDL) (a model of extravasated and modified LDL) and to 4-hydroxynonenal or 7-ketocholesterol (components of oxidised LDL), or to native LDL for 1 to 24 h with or without 1 h of pretreatment with inhibitors of the following: (1) the scavenger receptor (polyinosinic acid); (2) oxidative stress (N-acetyl cysteine); (3) endoplasmic reticulum (ER) stress (4-phenyl butyric acid); and (4) mitochondrial dysfunction (cyclosporin A). Oxidative stress, ER stress, mitochondrial dysfunction, apoptosis and autophagy were assessed using techniques including western blotting, immunofluorescence, RT-PCR, flow cytometry and TUNEL assay. To assess the relevance of the results in vivo, immunohistochemistry was used to detect the ER stress chaperon, 78 kDa glucose-regulated protein, and the ER sensor, activating transcription factor 6, in retinas from a mouse model of DR that mimics exposure of the retina to elevated glucose and elevated LDL levels, and in retinas from human participants with and without diabetes and DR.

Results: Compared with native LDL, HOG-LDL activated oxidative and ER stress in HRCP, resulting in mitochondrial dysfunction, apoptosis and autophagy. In a mouse model of diabetes and hyperlipidaemia (vs mouse models of either condition alone), retinal ER stress was enhanced. ER stress was also enhanced in diabetic human retina and correlated with the severity of DR.

Conclusions/interpretation: Cell culture, animal, and human data suggest that oxidative stress and ER stress are induced by modified LDL, and are implicated in pericyte loss in DR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously showed that extravasated, modified LDL is implicated in pericyte loss in diabetic retinopathy (DR). Here, we investigate whether modified LDL induces apoptosis in retinal Müller glial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan-Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pericyte loss is a cardinal feature of early diabetic retinopathy. We previously reported that highly oxidized-glycated low density lipoprotein (HOG-LDL) induces pericyte apoptosis in vitro. In this study, we investigated the role of the mitogen-activated protein kinase (MAPK) signaling pathways in HOG-LDL-induced apoptosis in human pericytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modified (oxidized and/or glycated) low-density lipoproteins (LDLs) have been implicated in retinal pericyte loss, one of the major pathologic features of early-stage diabetic retinopathy. To delineate underlying molecular mechanisms, the present study was designed to explore the global effects of modified LDL on pericyte gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to a current paradigm cardiovascular diseases can be initiated by exposure of vascular cells to qualitatively modified low-density lipoproteins (LDL). Capillary leakage, an early feature of diabetic retinopathy, results in the exposure of retinal pericytes to modified LDL, including glycated (G-LDL) and heavily oxidized glycated LDL (HOG-LDL). We demonstrate here that modified LDL inhibits the proliferation and survival of cultured human retinal pericytes. Modified LDL also induced DNA fragmentation in bovine retinal pericytes. Overall, HOG-LDL produced a significantly higher extent of cytotoxicity and apoptosis in retinal pericytes. These results indicate that exposure of pericytes to HOG-LDL could be implicated in the development of diabetic retinopathy.