955 resultados para ACIDIC SUBUNIT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14415 bp), S. japonicum (Anhui strain, China; 14085 bp) and S. mekongi (Khong Island, Laos; 14072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 an), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79 for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p73 has recently been identified as a structural and functional homolog of the tumor suppressor protein p53. Overexpression of p53 activates transcription of p53 effector genes, causes growth inhibition and induced apoptosis. We describe here the effects of a tumor-derived truncated transcript of p73 alpha (p73 Delta exon2) on p53 function and on cell death. This transcript, which lacks the acidic N-terminus corresponding to the transactivation domain of p53, was initially detected in a neuroblastoma cell line. Overexpression of p73 Delta exon2 partially protects lymphoblastoid cells against apoptosis induced by anti-Fas antibody or cisplatin. By cotransfecting p73 Delta exon2 with wild-type p53 in the p53 null line Saos 2, we found that this truncated transcript reduces the ability of wild-type p53 to promote apoptosis. This anti-apoptotic effect was also observed when p73 Delta exon2 was co-transfected with full-length p73 (p73 alpha). This was further substantiated by suppression of p53 transactivation of the effector gene p21-Waf1 in p73 Delta exon2 transfected cells and by inhibition of expression of a reporter gene under the control of the p53 promoter. Thus, this truncated form of p73 can act as a dominant-negative agent towards transactivation by p53 and p73 alpha, highlighting the potential implications of these findings for p53 signaling pathway. Furthermore, we demonstrate the existence of a p73 Delta exon2 transcript in a very significant proportion (46%) of breast cancer cell lines. However, a large spectrum of normal and malignant tissues need to be surveyed to determine whether this transdominant p73 variant occurs in a tumor-specific manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and downregulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Spl decreased. A causal relationship was established between these:observations by demonstrating that upregulation of Spl DNA binding activity by granulocyte/ macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells ban be explained by induction of ATM protein and kinase activity with time post-irradiation, Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scleractinian coral species, Seriatopora hystrix and Acropora longicyathus, are widely distributed throughout the latitudinal range of the tropical west Pacific. These 2 coral species live in a mutually beneficial relation with symbiotic dinoflagellates (zooxanthellae), which are passed to their progeny by vertical transmission (zooxanthellate eggs or larvae) and horizontal transmission (eggs or larvae that acquire symbionts from the environment), respectively. For S. hystrix, vertical transmission might create biogeographically isolated and genetically differentiated symbiont populations because the extent of its larval migration is known to be limited. On the other hand, horizontal transmission in corals such as A. longicyathus may result in genetically connected symbiont populations, especially if its zooxanthellae taxa are widely distributed. To examine these hypotheses, symbionts were collected from colonies of S. hystrix and A. longicyathus living in the Great Barrier Reef (Australia), South China Sea (Malaysia) and East China Sea (Ryukyus Archipelago, Japan), and were examined using restriction fragment length polymorphism and sequence analysis of large and small subunit rRNA genes. Phylogenetic analysis assigned the symbionts to 1 of 3 taxonomically distinct groups, known as clades. Symbionts from Australian and Japanese S. hystrix were placed in Clade C, and Malaysian S. hystrix symbionts in the newly described Clade D. Seven of 11 Australian and all Japanese and Malaysian colonies of A. longicyathus had symbiotic dinoflagellates that also grouped with Clade C, but symbionts from the remaining Australian colonies of A. longicyathus grouped with Clade A. Analysis of molecular variance of Clade C symbionts found significant genetic variation in 1 or more geographic groups (69.8%) and to a lesser extent among populations within geographic regions (13.6%). All populations of Clade C symbionts from S. hystrix were genetically differentiated according to geographic region. Although Clade C symbionts of A. longicyathus from Japan resolved into a distinct geographic group, those from Australia and Malaysia did not and were genetically connected. We propose that these patterns of genetic connectivity correlate with differences in the dispersal range of the coral or symbiont propagules and are associated with their respective modes of symbiont transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified novel adjuvant activity in specific cytosol fractions from trophozoites of Giardia isolate BRIS/95/HEPU/2041 (J. A. Upcroft, P. A. McDonnell, and P. Upcroft, Parasitol. Today, 14:281-284, 1998). Adjuvant activity was demonstrated in the systemic and mucosal compartments when Giardia extract was coadministered orally with antigen to mice. Enhanced antigen-specific serum antibody responses were demonstrated by enzyme-linked immunosorbent. assay to be comparable to those generated by the gold standard, mucosal adjuvant cholera toxin. A source of adjuvant activity was localized to the cytosolic component of the parasite. Fractionation of the cytosol produced fraction pools, some of which, when coadministered with antigen, stimulated an enhanced antigen-specific serum response. The toxic component of conventional mucosal adjuvants is associated with adjuvant activity; therefore, in a similar way, the toxin-like attributes of BRIS/95/HEPU/2041 may be responsible for its adjuvanticity. Complete characterization of the adjuvant is under way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beta -amino acid, taurine, is a full agonist of the human glycine receptor al subunit when recombinantly expressed in a mammalian (HEK293) cell line, but a partial agonist of the same receptor when expressed in Xenopus oocytes. Several residues in the Ala101-Thr112 domain have previously been identified as determinants of beta -amino acid binding and gating mechanisms in Xenopus oocyte-expressed receptors. The present study used the substituted cysteine accessibility method to investigate the role of this domain in controlling taurine-specific binding and gating mechanisms of glycine receptors recombinantly expressed in mammalian cells. Asn102 and Glu103 are identified as taurine and glycine binding sites, whereas Ala101 is eliminated as a possible binding site. The N102C mutation also abolished the antagonistic actions of taurine, indicating that this site does not discriminate between the putative agonist- and antagonist-bound conformations of beta -amino acids. The effects of mutations from Lys104-Thr112 indicate that the mechanism by which this domain controls beta -amino acid-specific binding and gating processes differs substantially depending on whether the receptor is expressed in mammalian cells or Xenopus oocytes. Thr112 is the only domain element in mammalian cell-expressed GlyRs which was demonstrated to discriminate between glycine and taurine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GCR1 has been tentatively identified in Arabidopsis thaliana as the first plant G-protein coupled receptor (GPCR) (Josefsson and Rask 1997) implicated in the cytokinin sensory pathway (Plakidou-Dymock et al. 1998). A protein fusion of GCR1 and green fluorescent protein has been expressed in Arabidopsis and shown GCR1 to be located on the plasma membrane. Studies of plants with altered GCR1 expression have led us to question GCR1's involvement in cytokinin signaling. Transgenic Arabidopsis plants containing sense and antisense constructs for GCR1 have been produced and over- and under-expression confirmed. The analysis of 12 antisense and 17 sense lines has failed to reveal the previously reported Dainty phenotype or altered cytokinin sensitivity. We have used the Gauntlet approach to test the plants' response to various plant hormones although this has not yet identified a mutant phenotype. The yeast-two hybrid system has been used and so far there is no evidence to suggest GCR1 interacts with heterotrimeric G proteins. Before GCR1 can be identified as genuine G-protein coupled receptor, the identification of a ligand and a proof of association with heterotrimeric G-proteins should be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntaxin 7 is a mammalian target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane transport between late endosomes and lysosomes. The aim of the present study was to use immunoaffinity techniques to identify proteins that interact with Syntaxin 7. We reasoned that this would be facilitated by the use of cells producing high levels of Syntaxin 7, Screening of a large number of tissues and cell lines revealed that Syntaxin 7 is expressed at very high levels in B16 melanoma cells. Moreover, the expression of Syntaxin 7 increased in these cells as they underwent melanogenesis. From a large scale Syntaxin 7 immunoprecipitation, we have identified six polypeptides using a combination of electrospray mass spectrometry and immunoblotting. These polypeptides corresponded to Syntaxin 7, Syntaxin 6, mouse Vps10p tail interactor 1b (mVti1b), alpha -synaptosome-associated protein (SNAP), vesicle-associated membrane protein (VAMP)8, VAMP7, and the protein phosphatase 1M regulatory subunit. We also observed partial colocalization between Syntaxin 6 and Syntaxin 7, between Syntaxin 6 and mVti1b, but not between Syntaxin 6 and the early endosomal t-SNARE Syntaxin 13. Based on these and data reported previously, we propose that Syntaxin 7/mVti1b/Syntaxin 6 may form discrete SNARE complexes with either VAMP7 or VAMPS to regulate fusion events within the late endosomal pathway and that these events may play a critical role in melanogenesis.