996 resultados para 987
Resumo:
We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian-Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial-interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1-1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial-interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian-Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1-1.0 Myrs.
Resumo:
Surface sediment samples from the Norwegian-Greenland Sea were investigated to reconstruct the spatial distribution of recent carbonate dissolution on the seafloor. Additionally, carbonate dissolution records of Ocean Drilling Program sites 985 and 987 are presented to outline the development of Pleistocene carbonate preservation. Today, well-preserved carbonate tests can be observed along the inflow of warm Atlantic surface water, extending as far as into the northernmost Norwegian-Greenland Sea. Increased dissolution is indicated along the continental margins and in the deepest parts of the Greenland Basin. Factors favoring carbonate preservation were found to be supersaturation of the water column with respect to calcium carbonate, high carbonate rain and probably excess alkalinity of bottom waters supplied by the arctic river discharge. Supralysoklinal dissolution is most important for recent carbonate dissolution in the Norwegian-Greenland Sea, whereas the deepest parts of the Greenland Basin reaches the calcite saturation horizon. Pleistocene dissolution records show some prominent peaks of extreme carbonate dissolution. During the Brunhes chron, carbonate dissolution maxima can be related to meltwater pulses, which probably inhibited deep-water formation in the Norwegian-Greenland Sea during deglaciation events. Long-term severe carbonate dissolution is evident during the late Matuyama chron. This can be probably related to low carbonate rain, due to a more eastwards located East Greenland Current and the nearly absence of the not yet polar adapted Neogloboquadrina pachyderma sin. during that period. Extreme dissolution events during the late Matuyama indicate strongly reduced deep-water formation.