991 resultados para 7140-326
Resumo:
Aims: To compare pressure resistance between strains of Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter fetus, and to investigate the effect of suspending medium on pressure resistance of sensitive and more resistant strains. Methods and Results: Six strains of C. jejuni and four each of C. coli, C. lari and C. fetus were pressure treated for 10 min at 200 and 300 MPa. Individual strains varied widely in pressure resistance but there were no significant differences between the species C. jejuni, C. coli and C. lari. Campylobacter fetus was significantly more pressure sensitive than the other three species. The pressure resistance of C. jejuni cultures reached a maximum at 16-18 h on entry into stationary phase then declined to a minimum at 75 h before increasing once more. Milk was more baroprotective than water, broth or chicken slurry but did not prevent inactivation even of a resistant strain at 400 MPa. Conclusions: Pressure resistance varies considerably between species of Campylobacter and among strains within a species, and survival after a pressure challenge will be markedly influenced by culture age and food matrix. Significance and Impact of the Study: Despite the strain variation in pressure resistance and protective effects of food, Campylobacter sp. do not present a particular problem for pressure processing.
Resumo:
Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This study compares relative and absolute forms of presenting risk information about influenza and the need for vaccination. It investigates whether differences in people's risk estimates and their evaluations of risk information, as a result of the different presentation formats, are still apparent when they are provided with information about the baseline level of risk. The results showed that, in the absence of baseline information, the relative risk format resulted in higher ratings of satisfaction, perceived effectiveness of vaccination, and likelihood of being vaccinated. However, these differences were not apparent when baseline information was presented. Overall, provision of baseline information resulted in more accurate risk estimates and more positive evaluations of the risk messages. It is recommended that, in order to facilitate shared and fully informed decision making, information about baseline level of risk should be included in all health communications specifying risk reductions, irrespective of the particular format adopted.
Resumo:
Objectives To evaluate the effectiveness of integrated motivational interviewing and cognitive behaviour therapy in addition to standard care for patients with psychosis and a co-morbid substance use problem. Design Two-centre, open, rater-blind randomised controlled trial Setting UK Secondary Care Participants 327 patients with clinical diagnoses of schizophrenia, schizophreniform or schizoaffective disorder and DSM-IV diagnoses of drug and/or alcohol dependence or abuse Interventions Participants were randomly allocated to integrated motivational interviewing and cognitive behaviour therapy or standard care. Therapy has two phases. Phase one – “motivation building” – concerns engaging the patient, then exploring and resolving ambivalence for change in substance use. Phase two –“Action” – supports and facilitates change using cognitive behavioural approaches. Up to 26 therapy sessions were delivered over one year. Main outcomes The primary outcome was death from any cause or admission to hospital in the 12 months after therapy. Secondary outcomes were frequency and amount of substance use (Timeline Followback), readiness to change, perceived negative consequences of use, psychotic symptom ratings, number and duration of relapses, global assessment of functioning and deliberate self harm, at 12 and 24 months, with additional Timeline Followback assessments at 6 and 18 months. Analysis was by intention-to-treat with robust treatment effect estimates. Results 327 participants were randomised. 326 (99.7%) were assessed on the primary outcome, 246 (75.2%) on main secondary outcomes at 24 months. Regarding the primary outcome, there was no beneficial treatment effect on hospital admissions/ death during follow-up, with 20.2% (33/163) of controls and 23.3% (38/163) of the therapy group deceased or admitted (adjusted odds-ratio 1.16; P= 0.579; 95% confidence interval 0.68 to 1.99). For secondary outcomes there was no treatment effect on frequency of substance use or perceived negative consequences, but a statistically significant effect of therapy on amount used per substance-using day (adjusted odds-ratios: (a) for main substance 1.50; P=0.016; 1.08 to 2.09, (b) all substances 1.48; P=0.017; 1.07 to 2.05). There was a statistically significant treatment effect on readiness to change use at 12 months (adjusted odds-ratio 2.05; P=0.004; 1.26 to 3.31), not maintained at 24 months. There were no treatment effects on assessed clinical outcomes. Conclusions Integrated motivational interviewing and cognitive behaviour therapy for people with psychosis and substance misuse does not improve outcome in terms of hospitalisation, symptom outcomes or functioning. It does result in a reduction in amount of substance use which is maintained over the year’s follow up. Trial registration Current Controlled Trials: ISRCTN14404480
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.