993 resultados para 52-418
Resumo:
Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.
Resumo:
Hydrothermal fluids expelled from the seafloor at high and low temperatures play pivotal roles in controlling seawater chemistry. However, the magnitude of the high temperature water flux of mid-ocean ridge axes remains widely disputed and the volume of low temperature vent fluids at ridge flanks is virtually unconstrained. Here, we determine both high and low temperature hydrothermal fluid fluxes using the chemical and isotopic mass balance of the element thallium (Tl) in the ocean crust. Thallium is a unique tracer of ocean floor hydrothermal exchange because of its contrasting behavior during seafloor alteration at low and high temperatures and the distinctive isotopic signatures of fresh and altered MORB and seawater. The calculated high temperature hydrothermal water flux is (0.17-2.93)*10**13 kg/yr with a best estimate of 0.72*10**13 kg/yr. This result suggests that only about 5 to 80% of the heat available at mid-ocean ridge axes from the crystallization and cooling of the freshly formed ocean crust, is released by high temperature black smoker fluids.The residual thermal energy ismost likely lost via conduction and/or through the circulation of intermediate temperature hydrothermal fluids that do not alter the chemical budgets of Tl in the ocean crust. The Tl-based calculations indicate that the low temperature hydrothermal water flux at ridge flanks is (0.2-5.4)*10**17 kg/yr. This implies that the fluids have an average temperature anomaly of only about 0.1 to 3.6 °C relative to ambient seawater. If these low temperatures are correct then both Sr and Mg are expected to be relatively unreactive in ridge-flank hydrothermal systems and this may explain why the extent of basalt alteration that is observed for altered ocean crust appears insufficient to balance the oceanic budgets of 87Sr/86Sr and Mg.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.