955 resultados para 500 MHZ
Resumo:
This study explores people's risk taking behaviour after having suffered large real-world losses following a natural disaster. Using the margins of the 2011 Australian floods (Brisbane) as a natural experimental setting, we find that homeowners who were victims of the floods and face large losses in property values are 50% more likely to opt for a risky gamble -- a scratch card giving a small chance of a large gain ($500,000) -- than for a sure amount of comparable value ($10). This finding is consistent with prospect theory predictions regarding the adoption of a risk-seeking attitude after a loss.
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Resumo:
Objective To determine whether locally applied tobramycin influences the ability of recombinant human bone morphogenetic protein 2 (rhBMP-2) to heal a segmental defect in the rat femur. Methods The influence of tobramycin on the osteogenic differentiation of mesenchymal stem cells was first evaluated in vitro. For the subsequent, in vivo experiments, a 5-mm segmental defect was created in the right femur of each of 25 Sprague-Dawley rats and stabilized with an external fixator and four Kirschner wires. Rats were divided in four groups: empty control, tobramycin (11 mg)/absorbable collagen sponge, rhBMP-2 (11 μg)/absorbable collagen sponge, and rhBMP-2/absorbable collagen sponge with tobramycin. Bone healing was monitored by radiography at 3 and 8 weeks. Animals were euthanized at 8 weeks and the properties of the defect were compared with the intact contralateral femur. Bone formation in the defect region was assessed by dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing. Results Tobramycin exerted a dose-dependent inhibition of alkaline phosphatase induction and calcium deposition by mesenchymal stem cells cultured under osteogenic conditions. The inhibition was reversed in the presence of 500 ng/mL of rhBMP-2. Segmental defects in the rat femora failed to heal in the absence of rhBMP-2. Tobramycin exerted no inhibitory effects on the ability of rhBMP-2 to heal these defects and increased the bone area of the defects treated with rhBMP-2. Data obtained from all other parameters of healing, including dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing, were unaffected by tobramycin. Conclusions Although our in vitro results suggested that tobramycin inhibits the osteogenic differentiation of mesenchymal stem cells, this could be overcome by rhBMP-2. Tobramycin did not impair the ability of rhBMP-2 to heal critical-sized femoral defects in rats. Indeed, bone area was increased by nearly 20% in the rhBMP-2 group treated with tobramycin. This study shows that locally applied tobramycin can be used in conjunction with rhBMP-2 to enhance bone formation at fracture sites.
Resumo:
Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1–34) sharing only 53% identity with hPTH(1–34). Here we demonstrate the in vivo actions of fPth1(1–34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 μg–1000 μg/kg body weight (b.w.), (30fPth1–1000fPth1)] or hPTH [30 μg–100 μg/kg b.w. (30hPTH–100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 μg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1–34), we have clearly established the efficacy of fPth1 (1–34) as an anabolic bone agent.
Resumo:
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.
Silk purse, sow’s ear : transforming second-Hand clothing into luxury fashion through craft practice
Resumo:
There is more apparel being created than ever before in history. The unsustainable production of materials and the clothing and textile waste that contributes annually to landfill, an estimated 500 000 tonnes of clothing per year in the UK (Gray, 2012) are significant issues inspiring the practice of Australian fashion designers, Carla van Lunn and Carla Binotto. While the contemporary fashion industry is built upon a production and consumption model that is younger than the industrial revolution, the traditions of costume, craft, and bodily adornment are ancient practices. Binotto and van Lunn believe that the potential for sustainable fashion practice lies outside the current industrial manufacturing model. This case study will discuss their fashion label, Maison Briz Vegas, and examine how recycling and traditional craft practices can be used to address the problem of clothing waste and offer an alternative idea of value in fashion and materials, addressing the indicative conference theme, Craft as Sustainability Activism in Practice. “Maison Briz Vegas”, a play on the notion of French luxury and the designers’ new world and sub-tropical home town, Brisbane, is an experimental and craft-based fashion label that uses second-hand cotton T-shirts and wool sweaters as primary materials to create designer fashion. The first collection, titled “The Wasteland”, was conceived and created in Paris in 2011, where designer Carla van Lunn had been living and working for several years. The collection was inspired by the precariousness of the global economy and concerns about climate change. The mountains of discarded clothing found at flea markets provided a textile resource from which van Lunn created a recycled hand-crafted fashion collection with an activist message and was shown to buyers and press during Paris Fashion Week. The label has since become a collaboration with fellow Australian designer Carla Binotto. The craft processes employed in Maison Briz Vegas’ up-cycled fashion collections include original hand block-printing, hand embroidery, quilting and patchwork. Taking an artisanal and slow approach, the designers work to create a hand touched imperfect style in a fashion market flooded with digital printing and fast mass-produced garments. The recycling extends to garment fastenings and embellishments, with discarded jar lids and bottle tops being used as buttons and within embroidery. This process transforms the material and aesthetic value of cheap and generic second-hand clothing and household waste. Maison Briz Vegas demonstrates the potential for craft and design to be an interface for environmental activism within the world of fashion. Presenting garments that are both high-design and thoughtfully recycled in a significant fashion context, such as Paris Fashion Week, Maison Briz Vegas has been able to engage a high-profile luxury fashion audience which has not traditionally considered sustainable or eco practices as relevant or desirable in themselves. The designers are studying how to apply their production model on a greater scale in order to fill commercial orders and reach a wider audience whilst maintaining the element of bespoke, limited edition, and slow hand-craft within their work.
Resumo:
The purpose of this study was to determine the threshold of exercise energy expenditure necessary to change blood lipid and lipoprotein concentrations and lipoprotein lipase activity (LPLA) in healthy, trained men. On different days, 11 men (age, 26.7 +/- 6.1 yr; body fat, 11.0 +/- 1.5%) completed four separate, randomly assigned, submaximal treadmill sessions at 70% maximal O-2 consumption. During each session 800, 1,100, 1,300, or 1,500 kcal were expended. Compared with immediately before exercise, high-density lipoprotein cholesterol (HDL-C) concentration was significantly elevated 24 h after exercise (P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated (P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 h before exercise, LPLA. was significantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions and remained elevated 48 h after exercise in the 1,500-kcal session. These data indicate that, in healthy, trained men, 1,100 kcal of energy expenditure are necessary to elicit increased HDL-C concentrations. These HDL-C changes coincided with increased LPLA.
Resumo:
This study proposes a five-level Z-source diode-clamped inverter designed with two intermediate Z-source networks connected between the dc input sources and rear-end inverter circuitry. By partially shorting the Z-source networks, new operating states not previously reported for two-level Z-source inverter are introduced here for operating the proposed inverter with voltage buck-boost energy conversion ability and five-level phase voltage switching. These characteristic features are in fact always ensured at the inverter terminal output by simply adopting a properly designed carrier modulation scheme, which always inserts two partial shoot-through states per half carrier cycle for smooth balanced operation. Theoretical findings and practical issues identified are eventually verified by constructing a scaled down laboratory prototype for testing.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
Using a sample of companies from the top 500 listed firms in Australia, we investigate whether the presence of a designated nomination committee and female representation on the nomination committee affect board gender diversity. We also examine whether gender diversity on the board affects firm risk and financial performance. We find that board gender diversity is significantly and positively associated with the presence of a designated nomination committee and that female representation on the nomination committee is a significant explanatory factor of increasing board gender diversity following the release of the 2010 Australian Securities Exchange Corporate Governance Council (ASXCGC) recommendations. Further, our results support the business case for board gender diversity as we find greater gender diversity moderates excessive firm risk which in turn improves firms’ financial performance. Our results are robust after correcting for selection bias and controlling for other board, firm and industry characteristics.
Resumo:
A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.
Resumo:
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.
Resumo:
Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.
Resumo:
The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.
Resumo:
Using a multiple plasma deposition-annealing (MDA) technique, we have fabricated an Au nanoisland-based thin film nanoresistor with a very low temperature coefficient of electrical resistivity in a cryogenic-to-room temperature range of 10 to 300 K. The nanoislanded gold film was deposited on a SiO2/Si wafer (500 nm SiO2 thickness) between two 300 nm thick Au electrodes which were separated by 100 m. A sophisticated selection of the thickness of the nanoislanded gold film, the annealing temperature, as well as the number of deposition/annealing cycles resulted in the fabrication of a nanoresistor with a temperature coefficient of electrical resistivity of 2.1 × 10-3 K-1 and the resistivity deviation not exceeding 2% in a cryogenic-to-room temperature range. We have found that the constant resistivity regime of the nanoisland-based thin film nanoresistor corresponds to a minimized nanoisland activation energy (approximately 0.3 meV). This energy can be minimized by reducing the nearest neighbor distance and increasing the size of the Au nanoislands in the optimized nanoresistor structure. It is shown that the constant resistivity nanoresistor operates in the regime where the thermally activated electron tunneling is compensated by the negative temperature dependence of the metallic-type conductivity of nanoislands. Our results are relevant to the development of commercially viable methods of nanoresistor production for various nanoelectronics-based devices. The proposed MDA technique also provides the opportunity to fabricate large arrays of metallic nanoparticles with controllable size, shapes and inter-nanoparticle gaps.