980 resultados para 5-AMINOLEVULINIC ACID-DERIVATIVES
Resumo:
Phenoxyalkanoic acid degradation is well studied in Beta- and Gammaproteobacteria, but the genetic background has not been elucidated so far in Alphaproteobacteria. We report the isolation of several genes involved in dichlor- and mecoprop degradation from the alphaproteobacterium Sphingomonas herbicidovorans MH and propose that the degradation proceeds analogously to that previously reported for 2,4-dichlorophenoxyacetic acid (2,4-D). Two genes for alpha-ketoglutarate-dependent dioxygenases, sdpA(MH) and rdpA(MH), were found, both of which were adjacent to sequences with potential insertion elements. Furthermore, a gene for a dichlorophenol hydroxylase (tfdB), a putative regulatory gene (cadR), two genes for dichlorocatechol 1,2-dioxygenases (dccA(I/II)), two for dienelactone hydrolases (dccD(I/II)), part of a gene for maleylacetate reductase (dccE), and one gene for a potential phenoxyalkanoic acid permease were isolated. In contrast to other 2,4-D degraders, the sdp, rdp, and dcc genes were scattered over the genome and their expression was not tightly regulated. No coherent pattern was derived on the possible origin of the sdp, rdp, and dcc pathway genes. rdpA(MH) was 99% identical to rdpA(MC1), an (R)-dichlorprop/alpha-ketoglutarate dioxygenase from Delftia acidovorans MC1, which is evidence for a recent gene exchange between Alpha- and Betaproteobacteria. Conversely, DccA(I) and DccA(II) did not group within the known chlorocatechol 1,2-dioxygenases, but formed a separate branch in clustering analysis. This suggests a different reservoir and reduced transfer for the genes of the modified ortho-cleavage pathway in Alphaproteobacteria compared with the ones in Beta- and Gammaproteobacteria.
Resumo:
Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.
Resumo:
There is no effective chemotherapy against diseases caused by Phytomonas sp., a plant trypanosomatid responsible for economic losses in major crops. We tested three triazolo-pyrimidine complexes [two with Pt(II), and another with Ru(III)] against promastigotes of Phytomonas sp. isolated from Euphorbia characias. The incorporation of radiolabelled precursors, ultrastructural alterations and changes in the pattern of metabolite excretion were examined. Different degrees of toxicity were found for each complex: the platinun compound showed an inhibition effect on nucleic acid synthesis, provoking alterations on the levels of mitochondria, nucleus and glycosomes. These results, together with others reported previously in our laboratory about the activity of pyrimidine derivatives, reflect the potential of these compounds as agents in the treatment of Phytomonas sp.
Resumo:
OBJECTIVE: To evaluate the efficacy and safety of pregabalin monotherapy versus placebo for symptomatic pain relief and improvement of patient global assessment in patients with fibromyalgia (FM) enrolled from countries outside the United States. METHODS: This international, multicenter, double-blind, placebo-controlled trial randomly assigned 747 patients with FM to placebo or 300, 450, or 600 mg/day pregabalin twice daily for 14 weeks. Primary efficacy measures were endpoint mean pain scores and Patient Global Impression of Change (PGIC). Secondary outcomes included assessments of sleep and function. RESULTS: Patients in the 450 mg/day pregabalin group showed significant improvements versus placebo in endpoint mean pain score (-0.56; p = 0.0132), PGIC (73% improved vs 56% placebo; p = 0.0017), and function [Fibromyalgia Impact Questionnaire (FIQ) total score -5.85; p = 0.0012]. PGIC was also significant for 600 mg/day pregabalin (69% improved; p = 0.0227). Results for these endpoints were nonsignificant for pregabalin at 300 mg/day and for pain and FIQ score at 600 mg/day. Early onset of pain relief was seen, with separation from placebo detected by Week 1 in all pregabalin groups. All pregabalin doses demonstrated superiority to placebo on the Medical Outcomes Study-Sleep Scale Sleep Disturbance subscale and the Sleep Quality diary. Dizziness and somnolence were the most frequently reported adverse events. CONCLUSION: Pregabalin demonstrated modest efficacy in pain, global assessment, and function in FM at 450 mg/day, and improved sleep across all dose levels, but it did not provide consistent evidence of benefit at 300 and 600 mg/day in this study. Pregabalin was generally well tolerated for the treatment of FM. (Clinical trial registry NCT00333866).
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
Recently, we generated two bacterial recombinant proteins expressing 89 amino acids of the C-terminal domain of the Plasmodium vivax merozoite surface protein-1 and the hexa-histidine tag (His6MSP1(19)). One of these recombinant proteins contained also the amino acid sequence of the universal pan allelic T-cell epitope (His6MSP1(19)-PADRE). In the present study, we evaluated the immunogenic properties of these antigens when administered via the intra-nasal route in the presence of distinct adjuvant formulations. We found that C57BL/6 mice immunized with either recombinant proteins in the presence of the adjuvants cholera toxin (CT) or the Escherichia coli heat labile toxin (LT) developed high and long lasting titers of specific serum antibodies. The induced immune responses reached maximum levels after three immunizing doses with a prevailing IgG1 subclass response. In contrast, mice immunized by intranasal route with His6MSP1(19)-PADRE in the presence of the synthetic oligonucleotides adjuvant CpG ODN 1826 developed lower antibody titers but when combined to CT, CpG addition resulted in enhanced IgG responses characterized by lower IgG1 levels. Considering the limitations of antigens formulations that can be used in humans, mucosal adjuvants can be a reliable alternative for the development of new strategies of immunization using recombinant proteins of P. vivax.
Resumo:
This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15) and Pol (n = 43) nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA) class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59) using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.
Resumo:
We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Summary. The outcome of hepatitis C virus (HCV) infection and the likelihood of a sustained virological response (SVR) to antiviral therapy depends on both viral and host characteristics. In vitro studies demonstrated that bile acids (BA) interfere with antiviral interferon effects. We investigate the influence of plasma BA concentrations and an ABCB11 polymorphism associated with lower transporter expression on viral load and SVR. Four hundred and fifty-one Caucasian HCV-patients treated with PEG-interferon and ribavirin were included in the study. ABCB11 1331T>C was genotyped, and plasma BA levels were determined. The 1331C allele was slightly overrepresented in HCV-patients compared to controls. In HCV-patients, a significant difference between patients achieving SVR vs non-SVR was observed for HCV-2/3 (5 vs 9 μm; P = 0.0001), while median BA levels in HCV-1 were marginally elevated. Normal BA levels <8 μm were significantly associated with SVR (58.3%vs 36.3%; OR 2.48; P = 0.0001). This difference was significant for HCV-2/3 (90.7%vs 67.6%; P = 0.002) but marginal in HCV-1 (38.7%vs 27.8%; P = 0.058). SVR rates were equivalent between ABCB11 genotypes for HCV-1, but increased for HCV-2/3 (TT 100%vs CC 78%; OR 2.01; P = 0.043). IL28B genotype had no influence on these associations. No correlation between BA levels and HCV RNA was detected for any HCV genotype. The higher allelic frequency of ABCB11 1331C in HCV-patients compared to controls may indirectly link increased BA to HCV chronicity. Our data support a role for BA as host factor affecting therapy response in HCV-2/3 patients, whereas a weaker association was found for HCV-1.
Resumo:
The synthetic n-alkyl esters of gallic acid (GA), also known as gallates, especially propyl, octyl and dodecyl gallates, are widely employed as antioxidants by food and pharmaceutical industries. The inhibitory effects of GA and 15 gallates on Herpes Simplex Virus type 1 (HSV-1) and Human Immunodeficiency Virus (HIV-1) replication were investigated here. After a preliminary screening of these compounds, GA and pentyl gallate (PG) seemed to be the most active compounds against HSV-1 replication and their mode of action was characterized through a set of assays, which attempted to localize the step of the viral multiplication cycle where impairment occurred. The detected anti-HSV-1 activity was mediated by the inhibition of virus attachment to and penetration into cells, and by virucidal properties. Furthermore, an anti-HIV-1 activity was also found, to different degrees. In summary, our results suggest that both compounds could be regarded as promising candidates for the development of topical anti-HSV-1 agents, and further studies concerning the anti-HIV-1 activity of this group of molecules are merited.
Resumo:
A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.
Resumo:
In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 µg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 µg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.
Resumo:
Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.
Resumo:
Background. In cardiopulmonary bypass (CPB) patients, fibrinolysis may enhance postoperative inflammatory response. We aimed to determine whether an additional postoperative dose of antifibrinolytic tranexamic acid (TA) reduced CPB-mediated inflammatory response (IR). Methods. We performed a randomized, double-blind, dose-dependent, parallel-groups study of elective CPB patients receiving TA. Patients were randomly assigned to either the single-dose group (40 mg/Kg TA before CPB and placebo after CPB) or the double-dose group (40 mg/Kg TA before and after CPB). Results. 160 patients were included, 80 in each group. The incident rate of IR was significantly lower in the double-dose-group TA2 (7.5% vs. 18.8% in the single-dose group TA1; P = 0.030). After adjusting for hypertension, total protamine dose and temperature after CPB, TA2 showed a lower risk of IR compared with TA1 [OR: 0.29 (95% CI: 0.10-0.83), (P = 0.013)]. Relative risk for IR was 2.5 for TA1 (95% CI: 1.02 to 6.12). The double-dose group had significantly lower chest tube bleeding at 24 hours [671 (95% CI 549-793 vs. 826 (95% CI 704-949) mL; P = 0.01 corrected-P significant] and lower D-dimer levels at 24 hours [489 (95% CI 437-540) vs. 621(95% CI: 563-679) ng/mL; P = 0.01 corrected-P significant]. TA2 required lower levels of norepinephrine at 24 h [0.06 (95% CI: 0.03-0.09) vs. 0.20(95 CI: 0.05-0.35) after adjusting for dobutamine [F = 6.6; P = 0.014 corrected-P significant]. We found a significant direct relationship between IL-6 and temperature (rho = 0.26; P < 0.01), D-dimer (rho = 0.24; P < 0.01), norepinephrine (rho = 0.33; P < 0.01), troponin I (rho = 0.37; P < 0.01), Creatine-Kinase (rho = 0.37; P < 0.01), Creatine Kinase-MB (rho = 0.33; P < 0.01) and lactic acid (rho = 0.46; P < 0.01) at ICU arrival. Two patients (1.3%) had seizure, 3 patients (1.9%) had stroke, 14 (8.8%) had acute kidney failure, 7 (4.4%) needed dialysis, 3 (1.9%) suffered myocardial infarction and 9 (5.6%) patients died. We found no significant differences between groups regarding these events. Conclusions. Prolonged inhibition of fibrinolysis, using an additional postoperative dose of tranexamic acid reduces inflammatory response and postoperative bleeding (but not transfusion requirements) in CPB patients. A question which remains unanswered is whether the dose used was ideal in terms of safety, but not in terms of effectiveness.
Resumo:
The intestinal anti-inflammatory effects of two probiotics isolated from breast milk, Lactobacillus reuteri and L. fermentum, were evaluated and compared in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Colitis was induced in rats by intracolonic administration of 10 mg TNBS dissolved in 50% ethanol (0.25 ml). Either L. reuteri or L. fermentum was daily administered orally (5 x 10(8) colony-forming units suspended in 0.5 ml skimmed milk) to each group of rats (n 10) for 3 weeks, starting 2 weeks before colitis induction. Colonic damage was evaluated histologically and biochemically, and the colonic luminal contents were used for bacterial studies and for SCFA production. Both probiotics showed intestinal anti-inflammatory effects in this model of experimental colitis, as evidenced histologically and by a significant reduction of colonic myeloperoxidase activity (P<0.05). L. fermentum significantly counteracted the colonic glutathione depletion induced by the inflammatory process. In addition, both probiotics lowered colonic TNFalpha levels (P<0.01) and inducible NO synthase expression when compared with non-treated rats; however, the decrease in colonic cyclo-oxygenase-2 expression was only achieved with L.fermentum administration. Finally, the two probiotics induced the growth of Lactobacilli species in comparison with control colitic rats, but the production of SCFA in colonic contents was only increased when L. fermentum was given. In conclusion, L. fermentum can exert beneficial immunomodulatory properties in inflammatory bowel disease, being more effective than L. reuteri, a probiotic with reputed efficacy in promoting beneficial effects on human health.