960 resultados para 3D point cloud


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells. (C) 2016 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the velocity of an effective temperature point (ETP), and by using a two-beam interferometer the proposed concept is corroborated. 1D unsteady heat flow via step-temperature excitation is interpreted as a `micro-scale rectilinear translatory motion' of an ETP. The velocity dependent function is extracted by revisiting the Fourier heat diffusion equation. The relationship between the velocity of the ETP with thermal diffusivity is modeled using a standard solution. Under optimized thermal excitation, the product of the `velocity of the ETP' and the distance is a new constitutive equation for the thermal diffusivity of the solid. The experimental approach involves the establishment of a 1D unsteady heat flow inside the sample through step-temperature excitation. In the moving isothermal surfaces, the ETP is identified using a two-beam interferometer. The arrival-time of the ETP to reach a fixed distance away from heat source is measured, and its velocity is calculated. The velocity of the ETP and a given distance is sufficient to estimate the thermal diffusivity of a solid. The proposed method is experimentally verified for BK7 glass samples and the measured results are found to match closely with the reported value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-point closure strategy in mapping closure approximation (MCA) approach is developed for the evolution of the probability density function (PDF) of a scalar advected by stochastic velocity fields. The MCA approach is based on multipoint statistics. We formulate a MCA modeled system using the one-point PDFs and two-point correlations. The MCA models can describe both the evolution of the PDF shape and the rate at which the PDF evolves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

基于管道微单元体平衡建立了海管单点提升的非线性力学模型的控制微分方程组,使用变弧长的无量纲代换将动边界问题化为固定边界的两点边值问题,利用maple环境下编制的两点边值问题的打靶法程序得到了该问题在各个提升阶段的数值解答和在单点提升过程中管道的极限弯矩约为0.71q~{1/3}(EI)~{2/3}。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained. It is demonstrated that fairly inertial particles travel along oscillating and intersecting trajectories between the bow and termination shock waves. In this region,formation of "multi-layer structure" in particle distribution with alternating low- and highdensity layers is revealed. Moreover, sharp accumulation of particles occurs near the envelopes of particle trajectories.