974 resultados para 270100 Biochemistry and Cell Biology
Resumo:
Transient receptor potential (TRP) channels couple various environmental factors to changes in membrane potential, calcium influx, and cell signaling. They also integrate multiple stimuli through their typically polymodal activation. Thus, although the TRPM8 channel has been extensively investigated as the major neuronal cold sensor, it is also regulated by various chemicals, as well as by several short channel isoforms. Mechanistic understanding of such complex regulation is facilitated by quantitative single-channel analysis. We have recently proposed a single-channel mechanism of TRPM8 regulation by voltage and temperature. Using this gating mechanism, we now investigate TRPM8 inhibition in cell-attached patches using HEK293 cells expressing TRPM8 alone or coexpressed with its short sM8-6 isoform. This is compared with inhibition by the chemicals N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide (BCTC) and clotrimazole or by elevated temperature. We found that within the seven-state single-channel gating mechanism, inhibition of TRPM8 by short sM8-6 isoforms closely resembles inhibition by increased temperature. In contrast, inhibition by BCTC and that by clotrimazole share a different set of common features. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The catalytic subunit of human telomerase (TERT) is highly expressed in cancer cells, and correlates with complex cytogenetics and disease severity in acute myeloid leukemia (AML). The TERT promoter is situated within a large CpG island, suggesting that expression is methylation-sensitive. Studies suggest a correlation between hypermethylation and TERT overexpression. We investigated the relationship between TERT promoter methylation and expression and telomerase activity in human leukemia and lymphoma cell lines. DAC-induced demethylation and cell death were observed in all three cell lines, as well as telomere shortening in HL-60 cells. DAC treatment reduced TERT expression and telomerase activity in OCI/AML3 and HL-60 cells, but not in U937 cells. Control U937 cells expressed lower levels of TERT mRNA, carried a highly methylated TERT core promoter, and proved more resistant to DAC-induced repression of TERT expression and cell death. AML patients had significantly lower methylation levels at several CpGs than "well elderly" individuals. This study, the first to investigate the relationship between TERT methylation and telomerase activity in leukemia cells, demonstrated a differential methylation pattern and response to DAC in three AML cell lines. We suggest that, although DAC treatment reduces TERT expression and telomerase activity, this is unlikely to occur via direct demethylation of the TERT promoter. However, further investigations on the regions spanning CpGs 7-12 and 14-16 may reveal valuable information regarding transcriptional regulation of TERT.
Resumo:
Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-?wca ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfa, kc, and il6 than the wild type. ompA mutants activated NF-?B, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-?B-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-?B, whereas 52145-?wca ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs () across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Advanced radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) achieve high levels of conformity to the target volume through the sequential delivery of highly spatially and temporally modulated radiation fields, which have been shown to impact radiobiological response. This study aimed to characterize the time and cell type dependency of survival responses to modulated fields using single cell type (SCT) and mixed cell type (MCT) co-culture models of transformed fibroblast (AG0-1522b) cells, and prostate (DU-145) and lung (H460) cancer cells. In SCT cultures, in-field responses showed no significant time dependency while out-of-field responses occurred early, and plateaued 6 h after irradiation in both DU-145 and H460 cells. Under modulated beam configurations MCT co-cultures showed cell-specific, differential out-of-field responses depending on the irradiated in-field and responding out-of-field cell type. The observed differential out-of-field responses may be due to the genetic background of the cells, in particular p53 status, which has been shown to mediate radiation-induced bystander effects (RIBEs). These data provide further insight into the radiobiological parameters that influence out-of-field responses, which have potential implications for advanced radiotherapy modalities and may provide opportunities for biophysical optimization in radiotherapy treatment planning.
Resumo:
Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.