945 resultados para 2-DIMENSIONAL ELECTRON-SYSTEM


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The aim of this follow-up study was to evaluate the clinical usefulness of a new type of 3-dimensional (3D) miniplate for open reduction and monocortical fixation of mandibular angle fractures. PATIENTS AND METHODS: In 20 consecutive patients, noncomminuted mandibular angle fractures were treated with open reduction and fixation using a 2 mm 3D miniplate system in a transoral approach. All patients were systematically monitored until 6 months postoperatively. Among the outcome parameters recorded were infection, hardware failure, wound dehiscence, and sensory disturbance of the inferior alveolar nerve. RESULTS: The mean operation time from incision to wound closure was 65 minutes. Two patients had a mucosal wound dehiscence with no consequences. None developed an infection requiring a plate removal. All but 2 patients had normal sensory function 3 months after surgery. Plate fracture occurred in one patient in whom a preceding surgical removal of the third molar had been the reason for the mandibular fracture. In the absence of clinical symptoms, the patient declined plate removal. On final follow-up, fracture healing was considered clinically complete in all patients. CONCLUSIONS: The 3D plating system described here is suitable for fixation of simple mandibular angle fractures and is an easy-to-use alternative to conventional miniplates. The system may be contraindicated in patients in whom insufficient interfragmentary bone contact causes minor stability of the fracture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grünberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grünberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional(1-D) multilayerd nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance(GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction- offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in predicting the equilibrium structure, stability as well as electronic and magnetic properties of one dimensional multilayered nanowires. Particularly, I have focused on the electronic and magnetic properties of Fe/Pt multilayered nanowire structures and the role of non-magnetic Pt spacer in modulating the magnetic properties of the wire. It is found that the average magnetic moment per atom in the nanowire increases monotonically with an ~1/(N(Fe)) dependance, where N(Fe) is the number of iron layers in the nanowire. A simple model based upon the interfacial structure is given to explain the 1/(N(Fe)) trend in magnetic moment obtained from the first principle calculations. A new mechanism, based upon spin flip with in the layer and multistep electron transfer between the layers, is proposed to elucidate the enhancement of magnetic moment of Iron atom at the Platinum interface. The calculated IEC in the Fe/Pt multilayered nanowire is found to switch sign as the width of the non-magnetic spacer varies. The competition among short and long range direct exchange and the super exchange has been found to play a key role for the non-monotonous sign in IEC depending upon the width of the Platinum spacer layer. The calculated magnetoresistance from Julliere's model also exhibit similar switching behavior as that of IEC. The universality of the behavior of exchange coupling has also been looked into by introducing different non-magnetic spacers like Palladium, Copper, Silver, and Gold in between magnetic Iron layers. The nature of hybridization between Fe and other non-magnetic spacer is found to dictate the inter layer magnetic interaction. For example, in Fe/Pd nanowire the d-p hybridization in two spacer layer case favors anti-ferromagnetic (AFM) configuration over ferromagnetic (FM) configuration. However, the hybridization between half-filled Fe(d) and filled Cu(p) state in Fe/Cu nanowire favors FM coupling in the 2-spacer system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study reports on 15 mandibular reconstructions using the Dumbach Titan Mesh-System and particulate cancellous bone and marrow harvested from bilateral posterior ilia. All cases showed segmental defects. Eleven cases involved patients with malignant tumor. Six patients had received irradiation of 40-50 Gy. Reconstructions were performed immediately in 1 patient and secondarily in the remaining 14 patients. In 13 cases, mandibles were successfully reconstructed. Of these 13 patients, 9 reconstructions were completed without complications, whereas the other 4 cases showed complications. In 2 cases, reconstruction failed completely. Overall success rate was 87%. Statistical analysis revealed the extent of mandibular defect, but not malignancy of the original disease or radiotherapy of

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tissue engineering and regenerative medicine have emerged in an effort to generate replacement tissues capable of restoring native tissue structure and function, but because of the complexity of biologic system, this has proven to be much harder than originally anticipated. Silica based bioactive glasses are popular as biomaterials because of their ability to enhance osteogenesis and angiogenesis. Sol-gel processing methods are popular in generating these materials because it offers: 1) mild processing conditions; 2) easily controlled structure and composition; 3) the ability to incorporate biological molecules; and 4) inherent biocompatibility. The goal of this work was to develop a bioactive vaporization system for the deposition of silica sol-gel particles as a means to modify the material properties of a substrate at the nano- and micro- level to better mimic the instructive conditions of native bone tissue, promoting appropriate osteoblast attachment, proliferation, and differentiation as a means for supporting bone tissue regeneration. The size distribution, morphology and degradation behavior of the vapor deposited sol-gel particles developed here were found to be dependent upon formulation (H2O:TMOS, pH, Ca/P incorporation) and manufacturing (substrate surface character, deposition time). Additionally, deposition of these particles onto substrates can be used to modify overall substrate properties including hydrophobicity, roughness, and topography. Deposition of Ca/P sol particles induced apatite-like mineral formation on both two- and three-dimensional materials when exposed to body fluids. Gene expression analysis suggests that Ca/P sol particles induce upregulation osteoblast gene expression (Runx2, OPN, OCN) in preosteoblasts during early culture time points. Upon further modification-specifically increasing particle stability-these Ca/P sol particles possess the potential to serve as a simple and unique means to modify biomaterial surface properties as a means to direct osteoblast differentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN: Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS: When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS: This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to delineate the anatomy of the precentral cerebellar vein, superior vermian vein, and internal occipital vein using reconstructions of computed tomographic and magnetic resonance imaging scans with navigation software. These data were compared with previous anatomic and angiographic findings to show the resolution and accuracy of the system. METHODS: We retrospectively reviewed 100 patients with intracranial pathologies (50 computed tomographic scans with contrast and 50 magnetic resonance imaging scans with gadolinium) using a neuronavigation workstation for 3-dimensional reconstruction. Particular attention was paid to depiction of the precentral cerebellar vein, superior vermian vein, and internal occipital vein. The data were reviewed and analyzed. RESULTS: The precentral cerebellar vein, superior vermian vein, and its tributary, the supraculminate vein, were depicted in 52 (52%) patients. The internal occipital vein was delineated on 99 (49.5%) sides and joined the basal vein and vein of Galen in 39 (39.4%) and 60 (60.6%) hemispheres, respectively. Comparing these results with previous angiographic studies, the ability of the neuronavigation system for depicting these vessels is similar to that of digital subtraction angiography. CONCLUSION: This study illustrates the possibility of depicting the small vessels draining into the pineal region venous complex using 3-dimensional neuronavigation with an accuracy comparable to that of digital subtraction angiography. This tool provides important information for both surgical planning and intraoperative orientation.