946 resultados para 10B:11B ratio
Resumo:
One distinctive effect on T-cell development was analyzed by selectively increasing serum prolactin (PRL) concentration in thymus-grafted congenitally athymic nude mice and by neutralizing PRL in suspension cultures of thymus from 1-day-old neonatal mice. Flow cytometric analysis of single-positive CD4+ and CD8+ cells derived from inguinal lymph nodes revealed a CD4/CD8 cell ratio of 2.2 +/- 0.18 (mean +/- SEM) in thymus-grafted nude mice that is similar to the ratio for immune-competent BALB/c mice (2.0 +/- 0.06). Addition of the pituitary to thymus-grafted nude mice significantly elevated serum PRL (P < 0.005) and increased the CD4/CD8 cell ratio (2.8 +/- 0.12; P < 0.005), demonstrating preferential stimulation of CD4+ cell development. T cells in nude mice receiving sham (submandibular salivary gland) or pituitary grafts alone were below detectable levels. Suspension cultures of neonatal thymus treated with anti-mouse PRL antiserum resulted in 20% and 30% decreases in double-positive CD4+8+ thymocytes and thymocyte viability, respectively. A 10-fold increase in double-negative CD4-8- thymocytes expressing the interleukin 2 receptor alpha chain, CD25, was also observed concurrently. Our findings illustrate an important way in which PRL may participate in two interrelated mechanisms: the regulation of peripheral single-positive cells and the maintenance of thymocyte viability during the double-positive stage of intrathymic differentiation.
Resumo:
The electrical resistivity of carbon fiber reinforced cement composites (CFRCCs) has been widely studied, because of their utility as multifunctional materials. The percolation phenomenon has also been reported and modeled when the electrical behavior of those materials had to be characterized. Amongst the multiple applications of multifunctional cement composites the ability of a CFRCC to act as a strain sensor is attractive. This paper provides experimental data relating self-sensing function and percolation threshold, and studying the effect of fiber aspect ratio on both phenomena. Higher fiber slenderness permitted percolation at lower carbon fiber addition, affected mechanical properties and improved strain-sensing sensitivity of CFRCC, which was also improved if percolation had not been achieved.
Resumo:
A comparative study of the influence of three different acid solids as catalysts (conventional zeolites Z15c with Si/Al = 19.5 and Z40c with Si/Al = 48.2, and a hierarchical zeolite Z40c-H with Si/Al = 50.0) for the etherification of glycerol with benzyl alcohol was performed. The catalytic activity and selectivity of these zeolites was elucidated at different catalyst contents. Three different ethers (3-benzyloxy-1,2-propanediol, which is a mono-benzyl-glycerol ether (MBG) and 1,3-dibenzyloxy-2-propanol, which is a di-benzyl-glycerol ether (DBG) and dibenzyl ether (DBz) were identified as the main products. MBG was the major product of the reaction catalyzed by the microporous Z15c zeolite with low Si/Al molar ratio, whereas DBG was formed in higher yield with the use of microporous Z40c and hierarchical Z40c-H zeolites, both of them having a similar high Si/Al molar ratio (≈50). MBG is a value-added product and it is obtained with good yield and selectivity when using the conventional zeolite Z15c as a catalyst. Under the best conditions tested, i.e., 25 mg of catalyst for 8 h at 120 °C, a 62% of conversion was obtained without the need of solvent, with an excellent 84% selectivity toward the MBG and no formation of DBz.
Resumo:
The middle Miocene Climatic Optimum (17-15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal d11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle Miocene (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (~1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350-400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200-260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere.
Resumo:
ODP Leg 204, which drilled at Hydrate Ridge, provides unique insights into the fluid regime of an accretionary complex and delineates specific sub-seafloor pathways for fluid transport. Compaction and dewatering due to smectite-illite transition increase with distance from the toe of the accretionary prism and bring up fluids from deep within the accretionary complex to sampled depths (<= 600 mbsf). These fluids have a distinctly non-radiogenic strontium isotope signature indicating reaction with the oceanic basement. Boron isotopes are also consistent with a deep fluid source that has been modified by desorption of heavy boron as clay minerals change from smectite to illite. One of three major horizons serves as conduit for the transport of mainly fluid. Our results enable us to evaluate fluid migration pathways that play important roles on massive gas hydrate accumulations and seepage of methane-rich fluids on southern Hydrate Ridge.
Resumo:
A large number of samples of nonlithified and lithified sediments from Leg 93 sites were analyzed for their contents of organic carbon and calcium carbonate. An average of two samples was selected from every core for carbonate determination; organic carbon was measured in most of these samples. Nearly all of these analyses were performed on board Glomar Challenger for samples from Sites 603 and 604. Site 605 samples, plus some of the deeper samples from Hole 603B, were analyzed at the University of Michigan. The procedures used in both cases were virtually the same, and their results compared well. Organic carbon analyses were done using a Hewlett- Packard 185-B CHN Analyzer. Portions of samples selected for calcium carbonate determinations were treated with dilute HC1 to remove carbonate, washed with deionized water, and dried at 110°C. A Cahn Electrobalance was used to weight 20-mg samples of sediment for CHN analysis. Samples were combusted at 1050°C in the presence of an oxidant, and the volumes of the evolved gases determined as measures of the C, H, and N contents of sediment organic matter. Areas of gas peaks were determined and compared to those of rock standards of known carbon and nitrogen contents. These values were used to standardize instrument response so that C/N atomic ratios could be reported. Organic carbon concentrations were calculated on the basis of sediment dry weight. Hydrogen elemental analysis with the procedure used is untrustworthy because of the variable amounts of clay minerals and their hydrates, hence hydrogen values are not reported for samples analyzed by this method.
Resumo:
New osmium (Os) isotope and platinum group element (PGE) concentration data are used in conjunction with published 3He and Th isotope data to determine the relative proportions of lithogenic, extraterrestrial and hydrogenous iridium (Ir) in a Pacific pelagic carbonate sequence from the Ocean Drilling Program (ODP) Site 806 on the Ontong Java Plateau (OJP). These calculations demonstrate that lithogenic and extraterrestrial contributions to sedimentary Ir budget are minor, while hydrogenous Ir accounts for roughly 85% of the total Ir. Application of analogous partitioning calculations to previously reported data from a North Pacific red clay sequence (LL44-GPC3) yields very similar results. Total Ir burial fluxes at Site 806 and LL44-GPC3 are also similar, 45 and 30 pg/cm**2/kyr, respectively. Average Ir/3He and Ir/xs230Th_initial ratios calculated from the entire Site 806 data set are similar to those reported earlier for Pacific sites. In general, down-core profiles of Ir, 3He and xs230Th_initial, are not well correlated with one another. However, all three data sets show similar variance and yield sediment mass accumulation rate estimates that agree within a factor of two. While these results indicate that Ir concentration has potential as a point-paleoflux tracer in pelagic carbonates, Ir-based paleoflux estimates are likely subject to uncertainties that are similar to those associated with Co-based paleoflux estimates. Consequently, local calibration of Ir flux in space and time will be required to fully assess the potential of Ir as a point paleoflux tracer. Measured 187Os/188Os of the OJP sediments are systematically lower than the inferred 187Os/188Os of contemporaneous seawater and a clear glacial-interglacial 187Os/188Os variation is lacking. Mixing calculations suggest Os contributions from lithogenic sources are insufficient to explain the observed 187Os/188Os variations. The difference between the 187Os/188Os of bulk sediment and that of seawater is interpreted in terms of subtle contributions of unradiogenic Os carried by particulate extraterrestrial material. Down-core variations of 187Os/188Os with Pt/Ir and Os/Ir also point to contributions from extraterrestrial particles. Mixing calculations for each set of several triplicate analyses suggest that the unradiogenic Os end member cannot be characterized by primary extraterrestrial particles of chondritic composition. It is noteworthy that in efforts aimed at determining the effect of extraterrestrial contributions, 187Os/188Os of pelagic carbonates has greater potential compared to abundances of PGE. An attempt has been made for the first time to estimate sediment mass accumulation rates based on amount of extraterrestrial Os in the OJP samples and previously reported extraterrestrial Os flux. Throughout most of the OJP record, Os isotope-based paleoflux estimates are within a factor of two of those derived using other constant flux tracers. Meaningful flux estimates cannot be made during glacial maxima because the OJP sediments do not record the low 187Os/188Os reported previously. We speculate that this discrepancy may be related to focusing of extraterrestrial particles at the OJP, as has been suggested to explain down-core 3He variations.