979 resultados para 049900 OTHER EARTH SCIENCES
Resumo:
The paper presents: 1) biologic summaries for each of the formations for which paleontologic data are available, with brief discussions of the geologic age; 2) geologic correlations of the formations and the distribution of their age-equivalents in Central America, the West Indies, and the southeastern United States; 3) an outline of the paleogeography of middle America. The biologic summaries are based on the paleontologic memoirs in this vol. by Messars. Howe, Berry, Chuchman, Jackson, Canu and Bassler and Pilsbry, Miss Rathbun and myself.
Resumo:
In the following an attempt is made to outline the specific problems of modelling of estuaries as characterized by the discharge of fresh water into a partially enclosed sea water body. The hydrodynamical regime and exchange mechanisms encountered in estuaries lead to specific chemical, biological and geological processes requiring specially adapted models.
Resumo:
ENGLISH: The tendency of the tunas, especially the yellowfin (Neothunnus macropterus) to be more abundant in the near vicinity of islands and seamounts, or "banks", than in the surrounding oceanic areas, is well known to commercial fishermen. This has been confirmed by statistical analysis of fishing vessel logbook records, which demonstrates that the catch-per-day's-fishing is, indeed, higher in the near vicinity of these features. It is hypothesized that islands and seamounts cause changes in the physical circulation or the biochemical cycle resulting in greater supplies of food for tunas in their immediate environs. In order to examine this hypothesis, and in order to study possible mechanisms involved, the "Island Current Survey" was undertaken from 8 May to 12 June, 1957, under the joint auspices of the Inter-American Tropical Tuna Commission and the Scripps Institution of Oceanography. Surveys of varying nature and extent were made from M/V Spencer F. Baird near Alijos Rocks, Clarion Island, Shimada Bank and Socorro Island (Figure 1). These studies sought to provide knowledge of the action of islands and seamounts in arresting, stalling or deflecting the mean current past them, in establishing convergence and divergence in the surface flow, in producing vertical motion (mixing and upwelling), and in influencing the primary production and the standing crops of phytoplankton and zooplankton. Each survey is discussed below in detail. Observations made at a front on 10 June will be discussed in another paper. SPANISH: Los pescadores que realizan la pesca comercial conocen muy bien la tendencia de los atunes, en particular del atún aleta amarilla (Neothunnus macropterus), de presentarse en mayor abundancia en las cercanías inmediatas a las islas y cimas submarinas, o "bancos", que en las áreas oceánicas circundantes. Este hecho ha sido confirmado par el análisis estadístico de los registros de los cuadernos de bitácora de las embarcaciones pesqueras, demostrándose que la captura par dias de pesca es, en efecto, más abundante en la inmediata proximidad de tales formaciones. Hipotéticamente se admite que las islas y las cimas submarinas provocan cambios en la circulación física o en el ciclo bioquímico, lo cual se pone de manifiesto a través de un mejor abastecimiento de alimento para los atunes en sus cercanías inmediatas. Con la finalidad de verificar esta hipótesis y de estudiar los mecanismos que ella involucra, se realizó la “Island Current Survey” del 8 de mayo al 12 de junio de 1957, bajo los auspicios de la Comisión Interamericana del Atún Tropical y de la Institución Scripps de Oceanografia. Con el barco Spencer F. Baird se hicieron observaciones de distintas clases y alcances cerca de las Rocas Alijos, la Isla Clarion, el Banco Shimada y la Isla Socorro (Figura 1). Estos estudios tuvieron por objeto adquirir conocimientos sobre la acción que ejercen las islas y cimas submarinas sobre la corriente promedio, ya sea deteniéndola, reduciendo su velocidad o desviando su curso, así como estableciendo convergencia o divergencia en su flujo de superficie, o provocando un movimiento vertical (mezcla y afloramiento) e influyendo en la producción primaria y en las existencias de fitoplancton y zooplancton. Cada operación será tratada a continuación por separado. Las observaciones hechas el dia 10 de junio sobre un frente serán objeto de otra publicación.
Resumo:
Submarine Landslides: An Introduction 1 By RIo Lee, W.C. Schwab, and J.S. Booth U.S. Atlantic Continental Slope Landslides: Their Distribution, General Anributes, and Implications 14 By J.S. Booth, D.W. O'Leary, Peter Popenoe, and W.W. Danforth Submarine Mass Movement, a Formative Process of Passive Continental Margins: The Munson-Nygren Landslide Complex and the Southeast New England Landslide Complex 23 By D.W. O'Leary The Cape Fear Landslide: Slope Failure Associated with Salt Diapirism and Gas Hydrate Decomposition 40 By Peter Popenoe, E.A. Schmuck, and W.P. Dillon Ancient Crustal Fractures Control the Location and Size of Collapsed Blocks at the Blake Escarpment, East of Florida 54 By W.P. Dillon, J.S. Risch, K.M. Scanlon, P.C. Valentine, and Q.J. Huggett Tectonic and Stratigraphic Control on a Giant Submarine Slope Failure: Puerto Rico Insular Slope 60 By W.C. Schwab, W.W. Danforth, and K.M. Scanlon Slope Failure of Carbonate Sediment on the West Florida Slope 69 By D.C. Twichell, P.C. Valentine, and L.M. Parson Slope Failures in an Area of High Sedimentation Rate: Offshore Mississippi River Delta 79 By J.M. Coleman, D.B. Prior, L.E. Garrison, and H.J. Lee Salt Tectonics and Slope Failure in an Area of Salt Domes in the Northwestern Gulf of Mexico 92 By B.A. McGregor, R.G. Rothwell, N.H. Kenyon, and D.C. Twichell Slope Stability in Regions 01 Sea-Floor Gas Hydrate: Beaufort Sea Continental Slope 97 By R.E. Kayen and H.J. Lee Mass Movement Related to Large Submarine Canyons Along the Beringian Margin, Alaska 104 By P.R. Carlson, H.A. Karl, B.D. Edwards, J.V. Gardner, and R. Hall Comparison of Tectonic and Stratigraphic Control of Submarine Landslides on the Kodiak Upper Continental Slope, Alaska 117 By M.A. Hampton Submarine Landslides That Had a Significant Impact on Man and His Activities: Seward and Valdez, Alaska 123 By M.A. Hampton, R.W. Lemke, and H.W. Coulter Processes Controlling the Style of Mass Movement in Glaciomarine Sediment: Northeastern Gulf of Alaska 135 By W.C. Schwab and H.J. Lee Contents V VI Contents Liquefaction of Continental Shelf Sediment: The Northern California Earthquake of 1980 143 By M.E. Field A Submarine Landslide Associated with Shallow Sea-Floor Gas and Gas Hydrates off Northern California 151 By M.E. Field and J.H. Barber, Jr. Sur Submarine Landslide, a Deep-Water Sediment Slope Failure 158 By C.E. Gutmacher and W.R. Normark Seismically Induced Mudflow in Santa Barbara Basin, California 167 By B.D. Edwards, H.J. Lee, and M.E. Field Submarine Landslides in a Basin and Ridge Setting, Southern California 176 By M.E. Field and B.D. Edwards Giant Volcano-Related Landslides and the Development of the Hawaiian Islands 184 By W.R. Normark, J.G. Moore, and M.E. Torresan Submarine Slope Failures Initiated by Hurricane Iwa, Kahe Point, Oahu, Hawaii 197 By W.R. Normark, Pat Wilde, J.F. Campbell, T.E. Chase, and Bruce Tsutsui (PDF contains 210 pages)
Resumo:
This is only the table of contents for a series of technical reports done from 1975-1978. The papers were done on contract for BLM by a number of universities and consulting firms such as Science Applications, Inc., University of Southern California, Scripps Institute of Oceanography, Moss Landing Marine Laboratories, and various campuses of University of California and California State University. (PDF contains 36 pages)
Resumo:
Sediment sampling was used to evaluate chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) spawning habitat quality in the South Fork Trinity River (SFTR) basin. Sediment samples were collected using a McNeil-type sampler and wet sieved through a series of Tyler screens (25.00 mm, 12.50 mm, 6.30 mm, 3.35 mm, 1.00 mm, and 0.85 mm). Fines (particles < 0.85 mm) were determined after a l0-minute settling period in Imhoff cones. Thirteen stations were sampled in the SFTR basin: five stations were located in mainstem SFTR between rk 2.1 and 118.5, 2 stations each were located in EF of the SFTR, Grouse Creek, and Madden Creek, and one station each was located in Eltapom and Hayfork Creeks. Sample means for fines(particles < 0.85 mm) fer SFTR stations ranged between 14.4 and 19.4%; tributary station sample mean fines ranged between 3.4 and 19.4%. Decreased egg survival would be expected at 4 of 5 mainstem SFTR stations and at one station in EF of SFTR and Grouse Creek where fines content exceed 15%. Small gravel/sand content measured at all stations were high, and exceed levels associated with reduced sac fry emergence rates. Reduction of egg survival or sac fry emergence due to sedimentation in spawning gravels could lead to reduced juvenile production from the South Fork Trinity River. (PDF contains 18 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
This Alliance for Coastal Technologies (ACT) workshop was convened to assess the availability and state of development of conductivity-temperature sensors that can meet the needs of coastal monitoring and management communities. Rased on the discussion, there are presently a number of commercial sensor options available, with a wide range of package configurations suitable for deployment in a range of coastal environments. However, some of the central questions posed in the workshop planning documents were left somewhat unresolved. The workshop description emphasized coastal management requirements and, in particular, whether less expensive, easily deployed, lower-resolution instruments might serve many management needs. While several participants expressed interest in this class of conductivity-temperature sensors, based on input from the manufacturers, it is not clear that simply relaxing the present level of resolution of existing instruments will result in instruments of significantly lower unit cost. Conductivity-temperature sensors are available near or under the $1,000 unit cost that was operationally defined at the workshop as a breakpoint for what might be considered to be a "low cost" sensor. For the manufacturers, a key consideration before undertaking the effort to develop lower cost sensors is whether there will be a significant market. In terms of defining "low cost," it was also emphasized that the "life cycle costs" for a given instrument must be considered (e.g., including personnel costs for deployment and maintenance). An adequate market survey to demonstrate likely applications and a viable market for lower cost sensors is needed. Another topic for the workshop was the introduction to the proposed ACT verification for conductivity-temperature sensors. Following a summary of the process as envisioned by ACT, initial feedback was solicited. Protocol development will be pursued further in a workshop involving ACT personnel and conductivity-temperature sensor manufacturers.[PDF contains 28 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
The Alliance for Coastal Technology (ACT) convened a workshop on the in situ measurement of dissolved inorganic carbon species in natural waters in Honolulu, Hawaii, on February 16, 17, and 18, 2005. The workshop was designed to summarize existing technologies for measuring the abundance and speciation of dissolved inorganic carbon and to make strategic recommendations for future development and application of these technologies to coastal research and management. The workshop was not focused on any specific technology, however, most of the attention of the workshop was on in situ pC02 sensors given their recent development and use on moorings for the measurement of global carbon fluxes. In addition, the problems and limitations arising from the long-term deployment of systems designed for the measurement of pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) were discussed. Participants included researchers involved in carbon biogeochemistry, industry representatives, and coastal resource managers. The primary questions asked during the workshop were: I. What are the major impediments to transform presently used shipboard pC02 measurement systems for use on cost-eficient moorings? 2. What are the major technical hurdles for the in situ measurement of TA and DIC? 3. What specific information do we need to coordinate efforts for proof of concept' testing of existing and new technologies, inter-calibration of those technologies, better software development, and more precise knowledge quantzjjing the geochemistry of dissolved inoeanic carbon species in order to develop an observing system for dissolved inorganic carbon? Based on the discussion resulting from these three questions, the following statements were made: Statement No. 1 Cost-effective, self-contained technologies for making long-term, accurate measurements of the partial pressure of C02 gas in water already exist and at present are ready for deployment on moorings in coastal observing systems. Statement No. 2 Cost-effective, self-contained systems for the measurement of pH, TA, and DIC are still needed to both fully define the carbonate chemistry of coastal waters and the fluxes of carbon between major biogeochemical compartments (e.g., air-sea, shelf-slope, water column-sediment, etc.). (pdf contains 23 pages)
Resumo:
The University of Hawaii Sea Grant College Program (UHSG) in partnership with the Hawaii Department of Land and Natural Resources (DLNR), Office of Conservation and Coastal Lands (OCCL) is developing a beach and dune management plan for Kailua Beach on the eastern shoreline of Oahu. The objective of the plan is to develop a comprehensive beach management and land use development plan for Kailua Beach that reflects the state of scientific understanding of beach processes in Kailua Bay and abutting shoreline areas and is intended to provide long-term recommendations to adapting to climate change including potential coastal hazards such as sea level rise. The development of the plan has lead to wider recognition of the significance of projected sea level rise to the region and provides the rational behind some of the land use conservation strategies. The plan takes on a critical light given global predictions for continued, possibly accelerated, sea-level rise and the ongoing focus of intense development along the Hawaiian shoreline. Hawaii’s coastal resource managers are faced with the daunting prospect of managing the effects of erosion while simultaneously monitoring and regulating high-risk coastal development that often impacts the shoreline. The beach and dune preservation plan is the first step in a more comprehensive effort prepare for and adapt to sea level rise and ensure the preservation of the beach and dune ecosystem for the benefit of present and future generations. The Kailua Beach and Dune Management plan is intended to be the first in a series of regional plans in Hawaii to address climate change adaptation through land use planning. (PDF contains 3 pages)
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)
Resumo:
Barrier islands are ecosystems that border coastal shorelines and form a protective barrier between continental shorelines and the wave action originating offshore. In addition to forming and maintaining an array of coastal and estuarine habitats of ecological and economic importance, barrier island coastlines also include some of the greatest concentrations of human populations and accompanying anthropogenic development in the world. These islands have an extremely dynamic nature whereby major changes in geomorphology and hydrology can occur over short time periods (i.e. days, hours) in response to extreme episodic storm events such as hurricanes and northeasters. The native vegetation and geological stability of these ecosystems are tightly coupled with one another and are vulnerable to storm-related erosion events, particularly when also disturbed by anthropogenic development. (PDF contains 4 pages)