1000 resultados para Globigerinoides tenellus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Holocene laminated sediments from a core transect centred in the oxygen minimum zone (OMZ) impinging at the continental slope off Pakistan indicate stable oxygen minimum conditions for the past 7000 calendar years. High SW-monsoon-controlled biological productivity and enhanced organic matter preservation during this period is reflected in high contents of total organic carbon (TOC) and redox-sensitive elements (Ni, V), as well as by a low-diversity, high-abundance benthic foraminiferal Buliminacea association and high abundance of the planktonic species Globigerina bulloides indicative of upwelling conditions. Surface-water productivity was strongest during SW monsoon maxima. Stable OMZ conditions (reflected by laminated sediments) were found also during warm interstadial events (Preboreal, Bølling-Allerød, and Dansgaard-Oeschger events), as well as during peak glacial times (17-22.5 ka, all ages in calendar years). Sediment mass accumulation rates were at a maximum during the Preboreal and Younger Dryas periods due to strong riverine input and mobilisation of fine-grained sediment coinciding with rapid deglacial sea-level rise, whereas eolian input generally decreased from glacial to interglacial times. In contrast, the occurrence of bioturbated intervals from 7 to 10.5 ka (early Holocene), in the Younger Dryas (11.7-13 ka), from 15 to 17 ka (Heinrich event 1) and from 22.5 to 25 ka (Heinrich event 2) suggests completely different conditions of oxygen-rich bottom waters, extremely low mass and organic carbon accumulation rates, a high-diversity benthic fauna, all indicating lowered surface-water productivity. During these intervals the OMZ was very poorly developed or absent and a sharp fall of the aragonite compensation depth favoured the preservation of pteropods. The abundance of lithogenic proxies suggests aridity and wind transport by northwesterly or northeasterly winds during these periods coinciding with the North Atlantic Heinrich events and dust peaks in the Tibetan Loess records. The correlation of the monsoon-driven OMZ variability in the Arabian Sea with the rapid climatic fluctuations in the high northern latitudes suggests a close coupling between the climates of the high and low latitudes at a global scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to reconstruct the monsoonal variability during the late Holocene we investigated a complete, annually laminated sediment record from the oxygen minimum zone (OMZ) off Pakistan for oxygen isotopes of planktic foraminifera and alkenone-derived sea surface temperatures (SST). Significant SST changes of up to 3°C which cannot be explained by changes in the alkenone-producing coccolithophorid species (inferred from the Gephyrocapsa oceanica / Emiliania huxleyi ratio) suggest that SST changes are driven by changes in the monsoon strength. Our high-(decadal)-resolution data indicate that the late Holocene in the northeastern Arabian Sea was not characterized by a stable uniform climate, as inferred from the Greenland ice cores, but by variations in the dominance of the SW monsoon conditions with significant effects on temperatures. Highest SST fluctuations of up to 3.0°C and 2.5°C were observed for the time interval from 4600 to 3300 years B.P. and during the past 500 years. The significant, short-term SST changes during the past 500 years might be related to climatic instabilities known from the northern latitudes ("Little Ice Age") and confirm global effects. Surface salinity values, reconstructed from delta18O records after correction for temperature-related oxygen isotope fractionation, suggest that in general, the past 5000 years were characterized by higher-than-recent evaporation and more intense SW monsoon conditions. However, between 4600 and 3700 years B.P., evaporation dropped, SW monsoon weakened, and NE monsoon conditions were comparatively enhanced. For the past 1500 years we infer strongly fluctuating monsoon conditions. Comparisons of reconstructed salinity records with ice accumulation data from published Tibetan ice core and Tibetan tree ring width data reveal that during the past 2000 years, enhanced evaporation in the northeastern Arabian Sea correlates with periods of increased ice accumulation in Tibet, and vice versa. This suggests a strong climatic relationship between both monsoon-controlled areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enhanced accumulation of organic matter in Eastern Mediterranean sapropels and their unusually low d15N values have been attributed to either enhanced nutrient availability which led to elevated primary production and carbon sequestration or to enhanced organic matter preservation under anoxic conditions. In order to evaluate these two hypothesis we have determined Ba/Al ratios, amino acid composition, N and organic C concentrations and d15N in sinking particles, surface sediments, eight spatially distributed core records of the youngest sapropel S1 (10-6 ka) and older sapropels (S5, S6) from two locations. These data suggest that (i) temporal and spatial variations in d15N of sedimentary N are driven by different degrees of diagenesis at different sites rather than by changes in N-sources or primary productivity and (ii) present day TOC export production would suffice to create a sapropel like S1 under conditions of deep-water anoxia. This implies that both enhanced TOC accumulation and d15N depletion in sapropels were due to the absence of oxygen in deep waters. Thus preservation plays a major role for the accumulation of organic-rich sediments casting doubt on the need of enhanced primary production for sapropel formation.