998 resultados para wind-erosion
Resumo:
The estimation of the long-term wind resource at a prospective site based on a relatively short on-site measurement campaign is an indispensable task in the development of a commercial wind farm. The typical industry approach is based on the measure-correlate-predict �MCP� method where a relational model between the site wind velocity data and the data obtained from a suitable reference site is built from concurrent records. In a subsequent step, a long-term prediction for the prospective site is obtained from a combination of the relational model and the historic reference data. In the present paper, a systematic study is presented where three new MCP models, together with two published reference models �a simple linear regression and the variance ratio method�, have been evaluated based on concurrent synthetic wind speed time series for two sites, simulating the prospective and the reference site. The synthetic method has the advantage of generating time series with the desired statistical properties, including Weibull scale and shape factors, required to evaluate the five methods under all plausible conditions. In this work, first a systematic discussion of the statistical fundamentals behind MCP methods is provided and three new models, one based on a nonlinear regression and two �termed kernel methods� derived from the use of conditional probability density functions, are proposed. All models are evaluated by using five metrics under a wide range of values of the correlation coefficient, the Weibull scale, and the Weibull shape factor. Only one of all models, a kernel method based on bivariate Weibull probability functions, is capable of accurately predicting all performance metrics studied.
Resumo:
The collection of wind speed time series by means of digital data loggers occurs in many domains, including civil engineering, environmental sciences and wind turbine technology. Since averaging intervals are often significantly larger than typical system time scales, the information lost has to be recovered in order to reconstruct the true dynamics of the system. In the present work we present a simple algorithm capable of generating a real-time wind speed time series from data logger records containing the average, maximum, and minimum values of the wind speed in a fixed interval, as well as the standard deviation. The signal is generated from a generalized random Fourier series. The spectrum can be matched to any desired theoretical or measured frequency distribution. Extreme values are specified through a postprocessing step based on the concept of constrained simulation. Applications of the algorithm to 10-min wind speed records logged at a test site at 60 m height above the ground show that the recorded 10-min values can be reproduced by the simulated time series to a high degree of accuracy.
Resumo:
Various studies investigating the future impacts of integrating high levels of renewable energy make use of historical meteorological (met) station data to produce estimates of future generation. Hourly means of 10m horizontal wind are extrapolated to a standard turbine hub height using the wind profile power or log law and used to simulate the hypothetical power output of a turbine at that location; repeating this procedure using many viable locations can produce a picture of future electricity generation. However, the estimate of hub height wind speed is dependent on the choice of the wind shear exponent a or the roughness length z0, and requires a number of simplifying assumptions. This paper investigates the sensitivity of this estimation on generation output using a case study of a met station in West Freugh, Scotland. The results show that the choice of wind shear exponent is a particularly sensitive parameter which can lead to significant variation of estimated hub height wind speed and hence estimated future generation potential of a region.
Resumo:
Flow along rivers, an integral part of many cities, might provide a key mechanism for ventilation – which is important for air quality and heat stress. Since the flow varies in space and time around rivers, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D flow in locations which are hard to observe. For three months in the winter and spring of 2011, the atmospheric flow above the River Thames in central London was observed using a scanning Doppler lidar, a dual-beam scintillometer and sonic anemometry. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s–1) as comparisons between sonic anemometers (0.35–0.73 m s–1). Second, the lidar duo-beam scanning strategy provided horizontal transects of wind vectors comparison with scintillometer rmse 1.12–1.63 m s–1) which revealed mean and turbulent flow across the river and surrounds; in particular: chanelling flow along the river and turbulence changes consistent with the roughness changes between built to river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on bankside roads.
Resumo:
The impact of a new approach to the evaluation of surface gravity wave drag (GWD) is assessed. This approach uses linear theory, but incorporates the effects of wind profile shear and curvature, by means of a second-order WKB approximation. While the theory predicts the possibility of either drag enhancement or reduction, depending on the wind profile, results obtained with the ERA-40 reanalysis data clearly indicate the predominance of local drag enhancement. However, the global impact of shear on the atmospheric axial GWD torque comes mostly from regions with predominantly easterly flow, contributing to a slight reduction of the bias found in different studies of the global angular momentum budget. The relative correction due to shear on linear GWD is found not to depend too strongly on the levels chosen for the computation of the low-level wind derivatives.
Resumo:
The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.
Resumo:
An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.
Resumo:
The effect of the surrounding lower buildings on the wind pressure distribution on a high-rise building is investigated by computational fluid dynamics (CFD). When B/H=0.1, it is found that the wind pressure on the windward side was reduced especially on the lower part, but for different layers of surrounding buildings, there was no great difference, which agrees with our previous wind tunnel experiment data. Then we changed the aspect ratio from 0.1 to 2, to represent different airflow regimes: skimming flow (SF), and wake interference (WI). It shows that the average Cp increases when B/H increases. For different air flow regimes, it is found that insignificant difference exists when the number of the building layers is more than 2. From the engineering point of view, it is sufficient to only include the first layer for natural ventilation design by using CFD simulation or wind tunnel experiment.
Resumo:
Meteorological (met) station data is used as the basis for a number of influential studies into the impacts of the variability of renewable resources. Real turbine output data is not often easy to acquire, whereas meteorological wind data, supplied at a standardised height of 10 m, is widely available. This data can be extrapolated to a standard turbine height using the wind profile power law and used to simulate the hypothetical power output of a turbine. Utilising a number of met sites in such a manner can develop a model of future wind generation output. However, the accuracy of this extrapolation is strongly dependent on the choice of the wind shear exponent alpha. This paper investigates the accuracy of the simulated generation output compared to reality using a wind farm in North Rhins, Scotland and a nearby met station in West Freugh. The results show that while a single annual average value for alpha may be selected to accurately represent the long term energy generation from a simulated wind farm, there are significant differences between simulation and reality on an hourly power generation basis, with implications for understanding the impact of variability of renewables on short timescales, particularly system balancing and the way that conventional generation may be asked to respond to a high level of variable renewable generation on the grid in the future.
Resumo:
As wind generation increases, system impact studies rely on predictions of future generation and effective representation of wind variability. A well-established approach to investigate the impact of wind variability is to simulate generation using observations from 10 m meteorological mast-data. However, there are problems with relying purely on historical wind-speed records or generation histories: mast-data is often incomplete, not sited at a relevant wind generation sites, and recorded at the wrong altitude above ground (usually 10 m), each of which may distort the generation profile. A possible complimentary approach is to use reanalysis data, where data assimilation techniques are combined with state-of-the-art weather forecast models to produce complete gridded wind time-series over an area. Previous investigations of reanalysis datasets have placed an emphasis on comparing reanalysis to meteorological site records whereas this paper compares wind generation simulated using reanalysis data directly against historic wind generation records. Importantly, this comparison is conducted using raw reanalysis data (typical resolution ∼50 km), without relying on a computationally expensive “dynamical downscaling” for a particular target region. Although the raw reanalysis data cannot, by nature of its construction, represent the site-specific effects of sub-gridscale topography, it is nevertheless shown to be comparable to or better than the mast-based simulation in the region considered and it is therefore argued that raw reanalysis data may offer a number of significant advantages as a data source.
Resumo:
Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.