921 resultados para waste handling
Resumo:
The use of mineral wool is becoming more widespread due to increased acoustic and thermal demands of Spanish Technical Building Code. This increase affects both in rehabilitation and new construction projects. Therefore, waste generation of this type of insulating material is having more importance. The main objective of this research is to study the possibility of recycling fiber obtained from mineral wool of the C&DW as an alternative material to chopped glass fibers that are currently used as reinforcing elements in the prefabricated plaster. To achieve this objective, series are made of plaster E-35 additived with rock wool residue and glass wool residue at different rates of addition. These series are repeated by changing the additive by E fiberglass (length of 25mm) to make a comparative analysis with respect to the series additived with mineral wool waste. All the series are subjected to the test to determine Shore C surface hardness and mechanical testing to determine the compressive and flexural strength. From the results it can be concluded that: with rock wool residue, increases Shore C hardness up to 15% with respect to the glass fiber and 9% with respect to the glass wool, with a percentage of addition 2%. With rock wool residue, weight is decreased by 5% with respect to the glass fiber and 4% with respect to the glass wool waste, with an addition percentage of 4%. For an addition rate of 4%, results in the flexural strength test with fiberglass are 85% higher than those obtained with glass wool residue. However, for a percentage of 1% addition, the results obtained with glass wool residue are 35% higher than those obtained with fiberglass. For an addition rate of 3% results in the compressive strength test with fiberglass are 54% lower than those obtained with rock wool waste and 70% lower than those obtained with glass wool waste. Comparing the two mineral wools, it can be concluded that up to 3% of the addition, the glass wool series results obtained are 10% higher than those additived with rock wool. However, higher percentages of addition show that the results obtained with rock wool are 35% higher than those obtained with glass wool. The general conclusion is that the series additived with mineral wool from C&DW show better results in tests than the ones used nowadays as plaster reinforcement.
Resumo:
The difficulty of dealing with construction and demolition waste (CDW) on construction sites is not new and continues to be a significant environmental problem. Currently the CDW collection system in Spain is done in a decentralized manner by each sub-contracted company, being necessary to implement effective waste management measures ensuring a correct management and minimization. During the last years several measures have been launched in order to improve and encourage the reuse and recycling of CDW. A widespread solution for CDW recovery is using them as a landscaping aggregate or for road bases and sub-bases. However, measures encouraging onsite prevention still need to be enhanced. This paper studies the major work stage generating CDW and analyses the categories of CDW produced during its execution. For this, several real building sites have been analysed in order to quantify the estimation of CDW generated. Results of this study show that a significant contributor to the CDW generation on building construction sites in Spain are the masonry works. Finally, a Best Practices Manual (BPM) is proposed containing several strategies on masonry works aimed not only at CDW prevention, but also at improving their management and minimization. The use of this BPM together with the Study and Plan of CDW management --required by law--, promotes the environmental management of the company, favouring the cohesion of the construction process organization at all stages giving rise to establishing responsibilities in the field of waste and providing a greater control over the process. Keywords: construction and demolition waste, management, masonry works, good practice measures, prevention.
Resumo:
New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly mportant. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha?1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtureswere higher than in soil-digestate mixtures. For bothwastes, therewas no correlation between disolved reactive P lost and the water soluble P.The interaction between soil and waste, the long experimentation time, and the volume of leachate obtained caused the waste?s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.
Resumo:
ISSIS is the instrument for imaging and slitless spectroscopy on-board WSO-UV. In this article, a detailed comparison between ISSIS expected radiometric performance and other ultraviolet instruments is shown. In addition, we present preliminary information on the performance verification tests and on the foreseen procedures for in-flight operation and data handling.
Resumo:
In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic amendment.
Resumo:
Sulphur compounds remaining in petroleum fractions from topping, hydroskimming or deep conversion processes are a growing concern for oil refiners since in the lapse of a few years the sulphur specification for motor fuels has dropped from 500 mg/kg to 10 mg/kg in most European countries. This increasingly stringent regulation has forced refineries to greatly improve their hydrodesulfurization units, increasing the desulfurization rates and thus consuming huge amounts of hydrogen.