963 resultados para vibration analysis
Resumo:
This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).
Resumo:
The Transport Certification Australia on-board mass feasibility project is testing various on-board mass devices in a range of heavy vehicles (HVs). Extensive field tests of on-board mass measurement systems for HVs have been conducted during 2008. These tests were of accuracy, robustness and tamper-evidence of heavy vehicle on-board mass telematics. All the systems tested showed accuracies within approximately +/- 500 kg of gross combination mass or approximately +/- 2% of the attendant weighbridge reading. Analysis of the dynamic data also showed encouraging results and has raised the possibility of use of such dynamic information in tamper evidence in two areas. This analysis was to determine if the use of averaged dynamic data could identify potential tampering or incorrect operating procedures as well as the possibility of dynamic measurements flagging a tamper event by the use of metrics including a tampering index (TIX). Technical and business options to detect tamper events will now be developed during implementation of regulatory OBM system application to Australian heavy vehicles (HVs).
Resumo:
Principal Topic Venture ideas are at the heart of entrepreneurship (Davidsson, 2004). However, we are yet to learn what factors drive entrepreneurs’ perceptions of the attractiveness of venture ideas, and what the relative importance of these factors are for their decision to pursue an idea. The expected financial gain is one factor that will obviously influence the perceived attractiveness of a venture idea (Shepherd & DeTienne, 2005). In addition, the degree of novelty of venture ideas along one or more dimensions such as new products/services, new method of production, enter into new markets/customer and new method of promotion may affect their attractiveness (Schumpeter, 1934). Further, according to the notion of an individual-opportunity nexus venture ideas are closely associated with certain individual characteristics (relatedness). Shane (2000) empirically identified that individual’s prior knowledge is closely associated with the recognition of venture ideas. Sarasvathy’s (2001; 2008) Effectuation theory proposes a high degree of relatedness between venture ideas and the resource position of the individual. This study examines how entrepreneurs weigh considerations of different forms of novelty and relatedness as well as potential financial gain in assessing the attractiveness of venture ideas. Method I use conjoint analysis to determine how expert entrepreneurs develop preferences for venture ideas which involved with different degrees of novelty, relatedness and potential gain. The conjoint analysis estimates respondents’ preferences in terms of utilities (or part-worth) for each level of novelty, relatedness and potential gain of venture ideas. A sample of 32 expert entrepreneurs who were awarded young entrepreneurship awards were selected for the study. Each respondent was interviewed providing with 32 scenarios which explicate different combinations of possible profiles open them into consideration. Results and Implications Results indicate that while the respondents do not prefer mere imitation they receive higher utility for low to medium degree of newness suggesting that high degrees of newness are fraught with greater risk and/or greater resource needs. Respondents pay considerable weight on alignment with the knowledge and skills they already posses in choosing particular venture idea. The initial resource position of entrepreneurs is not equally important. Even though expected potential financial gain gives substantial utility, result indicate that it is not a dominant factor for the attractiveness of venture idea.
Resumo:
Enterprise Architectures have emerged as comprehensive corporate artefacts that provide structure to the plethora of conceptual views on an enterprise. The recent popularity of a service-oriented design of organizations has added service and related constructs as a new element that requires consideration within an Enterprise Architecture. This paper analyzes and compares the existing proposals for how to best integrate services into Enterprise Architectures. It uses the popular Zachman Framework as an example and differentiates the existing integration alternatives. This research can be generalized beyond service integration into an investigation onto how to possibly extend Enterprise Architectures with emerging constructs.
Resumo:
This paper discusses diesel engine condition monitoring (CM) using acoustic emissions (AE) as well as some of the commonly encountered diesel engine problems. Also discussed are some of the underlying combustion related faults and the methods used in past studies to simulate diesel engine faults. The initial test involved an experimental simulation of two common combustion related diesel engine faults, namely diesel knock and misfire. These simulated faults represent the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank angle encoder and top-dead centre (TDC) signals. Using these signals, it was possible to characterise the effect of different combustion conditions and hence, various diesel engine in-cylinder pressure profiles.
Resumo:
This work examines the algebraic cryptanalysis of small scale variants of the LEX-BES. LEX-BES is a stream cipher based on the Advanced Encryption Standard (AES) block cipher. LEX is a generic method proposed for constructing a stream cipher from a block cipher, initially introduced by Biryukov at eSTREAM, the ECRYPT Stream Cipher project in 2005. The Big Encryption System (BES) is a block cipher introduced at CRYPTO 2002 which facilitates the algebraic analysis of the AES block cipher. In this article, experiments were conducted to find solutions of equation systems describing small scale LEX-BES using Gröbner Basis computations. This follows a similar approach to the work by Cid, Murphy and Robshaw at FSE 2005 that investigated algebraic cryptanalysis on small scale variants of the BES. The difference between LEX-BES and BES is that due to the way the keystream is extracted, the number of unknowns in LEX-BES equations is fewer than the number in BES. As far as the authors know, this attempt is the first at creating solvable equation systems for stream ciphers based on the LEX method using Gröbner Basis computations.
Resumo:
The use of porous structures as tissue engineering scaffolds imposes demands on structural parameters such as porosity, pore size and interconnectivity. For the structural analysis of porous scaffolds, micro-computed tomography (μCT) is an ideal tool. μCT is a 3D X-ray imaging method that has several advantages over scanning electron microscopy (SEM) and other conventional characterisation techniques: • visualisation in 3D • quantitative results • non-destructiveness • minimal sample preparation
Resumo:
A novel method was developed for a quantitative assessment of pore interconnectivity using micro-CT data. This method makes use of simulated spherical particles, percolating through the interconnected pore network. For each sphere diameter, the accessible pore volume is calculated. This algorithm was applied to compare pore interconnectivity of two different scaffold architectures; one created by salt-leaching and the other by stereolithography. The algorithm revealed a much higher pore interconnectivity for the latter one.
Resumo:
Pediatric oncology has emerged as one of the great medical success stories of the last 4 decades. The cure rate of childhood cancer has increased from approximately 25% in the 1960’s to more than 75% in more recent years. However, very little is known about how children actually experience the diagnosis and treatment of their illness. A total of 9 families in which a child was diagnosed with cancer were interviewed twice over a 12-month period. Using the qualitative methodology of interpretative phenomenological analysis (IPA), children’s experiences of being patients with a diagnosis of cancer were explicated. The results revealed 5 significant themes: the experience of illness, the upside of being sick, refocusing on what is important, acquiring a new perspective, and the experience of returning to wellbeing. Changes over time were noted because children’s experiences’ were often pertinent to the stage of treatment the child had reached. These results revealed rich and intimate information about a sensitive issue with implications for understanding child development and medical and psychosocial treatment.
Resumo:
Details of a project which fictionalises the oral history of the life of the author's polio-afflicted grandmother Beth Bevan and her experiences at a home for children with disabilities are presented. The speech and language patterns recognised in the first person narration are described, as also the sense of voice and identity communicated through the oral history.
Resumo:
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Resumo:
Purpose - The purpose of this paper is to introduce a knowledge-based urban development assessment framework, which has been constructed in order to evaluate and assist in the (re)formulation of local and regional policy frameworks and applications necessary in knowledge city transformations. Design/methodology/approach - The research reported in this paper follows a methodological approach that includes a thorough review of the literature, development of an assessment framework in order to inform policy-making by accurately evaluating knowledge-based development levels of cities, and application of this framework in a comparative study - Boston, Vancouver, Melbourne and Manchester. Originality/value - The paper, with its assessment framework, demonstrates an innovative way of examining the knowledge-based development capacity of cities by scrutinising their economic, socio-cultural, enviro-urban and institutional development mechanisms and capabilities. Practical implications - The paper introduces a framework developed to assess the knowledge-based development levels of cities; presents some of the generic indicators used to evaluate knowledge-based development performance of cities; demonstrates how a city can benchmark its development level against that of other cities, and; provides insights for achieving a more sustainable and knowledge-based development.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
Background: Efforts to prevent the development of overweight and obesity have increasingly focused early in the life course as we recognise that both metabolic and behavioural patterns are often established within the first few years of life. Randomised controlled trials (RCTs) of interventions are even more powerful when, with forethought, they are synthesised into an individual patient data (IPD) prospective meta-analysis (PMA). An IPD PMA is a unique research design where several trials are identified for inclusion in an analysis before any of the individual trial results become known and the data are provided for each randomised patient. This methodology minimises the publication and selection bias often associated with a retrospective meta-analysis by allowing hypotheses, analysis methods and selection criteria to be specified a priori. Methods/Design: The Early Prevention of Obesity in CHildren (EPOCH) Collaboration was formed in 2009. The main objective of the EPOCH Collaboration is to determine if early intervention for childhood obesity impacts on body mass index (BMI) z scores at age 18-24 months. Additional research questions will focus on whether early intervention has an impact on children’s dietary quality, TV viewing time, duration of breastfeeding and parenting styles. This protocol includes the hypotheses, inclusion criteria and outcome measures to be used in the IPD PMA. The sample size of the combined dataset at final outcome assessment (approximately 1800 infants) will allow greater precision when exploring differences in the effect of early intervention with respect to pre-specified participant- and intervention-level characteristics. Discussion: Finalisation of the data collection procedures and analysis plans will be complete by the end of 2010. Data collection and analysis will occur during 2011-2012 and results should be available by 2013. Trial registration number: ACTRN12610000789066