926 resultados para type III secretion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9 play a variety of important roles in both physiological and pathological processes and are regulated by various growth factors, including transforming growth factor-β1 (TGF-β1), in several cell types. Previous studies have suggested that cellular control of one or both collagenases can occur through direct transcriptional mechanisms and/or after secretion through proenzyme processing and interactions with metalloproteinase inhibitors. Using human prostate cancer cell lines, we have found that TGF-β1 induces the MMP-9 proenzyme; however, this induction does not result from direct effects on gene transcription but, instead, through a protein synthesis–requiring process leading to increased MMP-9 mRNA stability. In addition, we have examined levels of TGF-β1 regulation of MMP-2 in one prostate cancer cell line and found that TGF-β1 induces higher secreted levels of this collagenase through increased stability of the secreted 72-kDa proenzyme. These results identify two novel nontranscriptional pathways for the cellular regulation of MMP-9 and MMP-2 collagenase gene expression and activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tlg1p and Tlg2p, members of the syntaxin family of SNAREs in yeast, have been implicated in both endocytosis and the retention of late Golgi markers. We have investigated the functions of these and the other endocytic syntaxins Pep12p and Vam3p. Remarkably, growth is possible in the absence of all four proteins. In the absence of the others, Pep12p and Tlg1p can each create endosomes accessible to the endocytic tracer dye FM4-64. However, although Pep12p is required for the ligand-induced internalization of the α factor receptor and its passage via Pep12p-containing membranes to the vacuole, Tlg1p is not. In contrast, Tlg1p is required for the efficient localization of the catalytic subunit of chitin synthase III (Chs3p) to the bud neck, a process that involves endocytosis and polarized delivery of Chs3p. In wild-type cells, internalized Chs3p cofractionates with Tlg1p and Tlg2p, and in a strain lacking the other endocytic syntaxins, either Tlg1p or Tlg2p is sufficient for correct localization of the enzyme. Pep12p is neither necessary nor sufficient for this process. We conclude that there are two endocytic routes in yeast that can operate independently and that Tlg1p is located at the junction of one of these with the polarized exocytic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cagA, a gene that codes for an immunodominant antigen, is present only in Helicobacter pylori strains that are associated with severe forms of gastroduodenal disease (type I strains). We found that the genetic locus that contains cagA (cag) is part of a 40-kb DNA insertion that likely was acquired horizontally and integrated into the chromosomal glutamate racemase gene. This pathogenicity island is flanked by direct repeats of 31 bp. In some strains, cag is split into a right segment (cagI) and a left segment (cagII) by a novel insertion sequence (IS605). In a minority of H. pylori strains, cagI and cagII are separated by an intervening chromosomal sequence. Nucleotide sequencing of the 23,508 base pairs that form the cagI region and the extreme 3′ end of the cagII region reveals the presence of 19 ORFs that code for proteins predicted to be mostly membrane associated with one gene (cagE), which is similar to the toxin-secretion gene of Bordetella pertussis, ptlC, and the transport systems required for plasmid transfer, including the virB4 gene of Agrobacterium tumefaciens. Transposon inactivation of several of the cagI genes abolishes induction of IL-8 expression in gastric epithelial cell lines. Thus, we believe the cag region may encode a novel H. pylori secretion system for the export of virulence determinants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progesterone (P) powerfully inhibits gonadotropin-releasing hormone (GnRH) secretion in ewes, as in other species, but the neural mechanisms underlying this effect remain poorly understood. Using an estrogen (E)-free ovine model, we investigated the immediate GnRH and luteinizing hormone (LH) response to acute manipulations of circulating P concentrations and whether this response was mediated by the nuclear P receptor. Simultaneous hypophyseal portal and jugular blood samples were collected over 36 hr: 0–12 hr, in the presence of exogenous P (P treatment begun 8 days earlier); 12–24 hr, P implant removed; 24–36 hr, P implant reinserted. P removal caused a significant rapid increase in the GnRH pulse frequency, which was detectable within two pulses (175 min). P insertion suppressed the GnRH pulse frequency even faster: the effect detectable within one pulse (49 min). LH pulsatility was modulated identically. The next two experiments demonstrated that these effects of P are mediated by the nuclear P receptor since intracerebroventricularly infused P suppressed LH release but 3α-hydroxy-5α-pregnan-20-one, which operates through the type A γ-aminobutyric acid receptor, was without effect and pretreatment with the P-receptor antagonist RU486 blocked the ability of P to inhibit LH. Our final study showed that P exerts its acute suppression of GnRH through an E-dependent system because the effects of P on LH secretion, lost after long-term E deprivation, are restored after 2 weeks of E treatment. Thus we demonstrate that P acutely inhibits GnRH through an E-dependent nuclear P-receptor system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We attempted to devise a transcription system in which a particular DNA sequence of interest could be inducibly expressed under the control of a modified polymerase III (pol III) promoter. Its activation requires a mutated transcription factor not contained endogenously in human cells. We constructed such a promoter by fusing elements of the β-lactamase gene of Escherichia coli, containing a modified TATA-box and a pol III terminator, to the initiation region of the human U6 gene. This construct functionally resembles a 5′-regulated pol III gene and its transcribed segment can be exchanged for an arbitrary sequence. Its transcription in vitro by pol III requires the same factors as the U6 gene with the major exception that the modified TATA-box of this construct only interacts with a TATA-binding protein (TBP) mutant (TBP-DR2) but not with TBP wild-type (TBPwt). Its transcription therefore requires TBP-DR2 exclusively instead of TBPwt. In order to render the system inducible, we fused the gene coding for TBP-DR2 to a tetracycline control element and stably transfected this new construct into HeLa cells. Induction of such a stable and viable clone with tetracycline resulted in the expression of functional TBP-DR2. This system may conceptually be used in the future to inducibly express an arbitrary DNA sequence in  vivo under the control of the above mentioned promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted gene disruption in the murine TOP3β gene-encoding DNA topoisomerase IIIβ was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIα, top3β−/− nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIβ have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3β−/− mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3β−/− nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund–Thomson syndromes, the shortened lifespan of top3β−/− mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) α1S subunit is responsible for bidirectional-signaling interactions with the ryanodine receptor (RyR1): transmitting an orthograde, excitation–contraction (EC) coupling signal to RyR1 and receiving a retrograde, current-enhancing signal from RyR1. Previously, several reports argued for the importance of two distinct regions of the skeletal II-III loop (residues R681–L690 and residues L720–Q765, respectively), claiming for each a key function in DHPR–RyR1 communication. To address whether residues 720–765 of the II-III loop are sufficient to enable skeletal-type (Ca2+ entry-independent) EC coupling and retrograde interaction with RyR1, we constructed a green fluorescent protein (GFP)-tagged chimera (GFP-SkLM) having rabbit skeletal (Sk) DHPR sequence except for a II-III loop (L) from the DHPR of the house fly, Musca domestica (M). The Musca II-III loop (75% dissimilarity to α1S) has no similarity to α1S in the regions R681–L690 and L720–Q765. GFP-SkLM expressed in dysgenic myotubes (which lack endogenous α1S subunits) was unable to restore EC coupling and displayed strongly reduced Ca2+ current densities despite normal surface expression levels and correct triad targeting (colocalization with RyR1). Introducing rabbit α1S residues L720–L764 into the Musca II-III loop of GFP-SkLM (substitution for Musca DHPR residues E724–T755) completely restored bidirectional coupling, indicating its dependence on α1S loop residues 720–764 but its independence from other regions of the loop. Thus, 45 α1S-residues embedded in a very dissimilar background are sufficient to restore bidirectional coupling, indicating that these residues may be a site of a protein–protein interaction required for bidirectional coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the HA1 domain of 254 human influenza A(H3N2) virus genes for clues that might help identify characteristics of hemagglutinins (HAs) of circulating strains that are predictive of that strain’s epidemic potential. Our preliminary findings include the following. (i) The most parsimonious tree found requires 1,260 substitutions of which 712 are silent and 548 are replacement substitutions. (ii) The HA1 portion of the HA gene is evolving at a rate of 5.7 nucleotide substitutions/year or 5.7 × 10−3 substitutions/site per year. (iii) The replacement substitutions are distributed randomly across the three positions of the codon when allowance is made for the number of ways each codon can change the encoded amino acid. (iv) The replacement substitutions are not distributed randomly over the branches of the tree, there being 2.2 times more changes per tip branch than for non-tip branches. This result is independent of how the virus was amplified (egg grown or kidney cell grown) prior to sequencing or if sequencing was carried out directly on the original clinical specimen by PCR. (v) These excess changes on the tip branches are probably the result of a bias in the choice of strains to sequence and the detection of deleterious mutations that had not yet been removed by negative selection. (vi) There are six hypervariable codons accumulating replacement substitutions at an average rate that is 7.2 times that of the other varied codons. (vii) The number of variable codons in the trunk branches (the winners of the competitive race against the immune system) is 47 ± 5, significantly fewer than in the twigs (90 ± 7), which in turn is significantly fewer variable codons than in tip branches (175 ± 8). (viii) A minimum of one of every 12 branches has nodes at opposite ends representing viruses that reside on different continents. This is, however, no more than would be expected if one were to randomly reassign the continent of origin of the isolates. (ix) Of 99 codons with at least four mutations, 31 have ratios of non-silent to silent changes with probabilities less than 0.05 of occurring by chance, and 14 of those have probabilities <0.005. These observations strongly support positive Darwinian selection. We suggest that the small number of variable positions along the successful trunk lineage, together with knowledge of the codons that have shown positive selection, may provide clues that permit an improved prediction of which strains will cause epidemics and therefore should be used for vaccine production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major constituent of senile plaques in Alzheimer’s disease is a 42-aa peptide, referred to as β-amyloid (Aβ). Aβ is generated from a family of differentially spliced, type-1 transmembrane domain (TM)-containing proteins, called APP, by endoproteolytic processing. The major, relatively ubiquitous pathway of APP metabolism in cell culture involves cleavage by α-secretase, which cleaves within the Aβ sequence, thus precluding Aβ formation and deposition. An alternate secretory pathway, enriched in neurons and brain, leads to cleavage of APP at the N terminus of the Aβ peptide by β-secretase, thus generating a cell-associated β-C-terminal fragment (β-CTF). A pathogenic mutation at codons 670/671 in APP (APP “Swedish”) leads to enhanced cleavage at the β-secretase scissile bond and increased Aβ formation. An inhibitor of vacuolar ATPases, bafilomycin, selectively inhibits the action of β-secretase in cell culture, suggesting a requirement for an acidic intracellular compartment for effective β-secretase cleavage of APP. β-CTF is cleaved in the TM domain by γ-secretase(s), generating both Aβ 1–40 (90%) and Aβ 1–42 (10%). Pathogenic mutations in APP at codon 717 (APP “London”) lead to an increased proportion of Aβ 1–42 being produced and secreted. Missense mutations in PS-1, localized to chromosome 14, are pathogenic in the majority of familial Alzheimer’s pedigrees. These mutations also lead to increased production of Aβ 1–42 over Aβ 1–40. Knockout of PS-1 in transgenic animals leads to significant inhibition of production of both Aβ 1–40 and Aβ 1–42 in primary cultures, indicating that PS-1 expression is important for γ-secretase cleavages. Peptide aldehyde inhibitors that block Aβ production by inhibiting γ-secretase cleavage of β-CTF have been discovered.