945 resultados para two-dimensional capillary electrophoresis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the sequencing of the human genome was completed, attention has turned to examining the functionality of the molecular machinery, in particular of protein expression. Differential proteome analysis by two-dimensional electrophoresis has been adopted to study changes in T cell proteomes during T cell activation, and this work is increasing our understanding of the complexity of signals elicited across multiple pathways. The purpose of this review is to summarize the available evidence in the application of proteomic techniques and methodologies to understand T cell receptor activation from lipid raft and cytoskeletal rearrangements, through to signalling cascades, transcription factor modulation and changes in protein expression patterns. These include post-translational modifications, which are not encoded by the genome. © 2007 British Society for Immunology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μM) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical visualization systems are desirable because a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex high-dimensional data sets. We extend an existing locally linear hierarchical visualization system PhiVis [1] in several directions: bf(1) we allow for em non-linear projection manifolds (the basic building block is the Generative Topographic Mapping -- GTM), bf(2) we introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree, bf(3) we describe folding patterns of low-dimensional projection manifold in high-dimensional data space by computing and visualizing the manifold's local directional curvatures. Quantities such as magnification factors [3] and directional curvatures are helpful for understanding the layout of the nonlinear projection manifold in the data space and for further refinement of the hierarchical visualization plot. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. We demonstrate the visualization system principle of the approach on a complex 12-dimensional data set and mention possible applications in the pharmaceutical industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a compact two-dimensional accelerometer based upon a simple fiber cantilever constructed from a short length of multicore optical fiber. Two-axis measurement is demonstrated up to 3 kHz. Differential measurement between fiber Bragg gratings written in the multicore fiber provides temperature- insensitive measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized systematic description of the Two-Wave Mixing (TWM) process in sillenite crystals allowing for arbitrary orientation of the grating vector is presented. An analytical expression for the TWM gain is obtained for the special case of plane waves in a thin crystal (|g|d«1) with large optical activity (|g|/?«1, g is the coupling constant, ? the rotatory power, d the crystal thickness). Using a two-dimensional formulation the scope of the nonlinear equations describing TWM can be extended to finite beams in arbitrary geometries and to any crystal parameters. Two promising applications of this formulation are proposed. The polarization dependence of the TWM gain is used for the flattening of Gaussian beam profiles without expanding them. The dependence of the TWM gain on the interaction length is used for the determination of the crystal orientation. Experiments carried out on Bi12GeO20 crystals of a non-standard cut are in good agreement with the results of modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate a simplified model of two fully connected magnetic systems maintained at different temperatures by virtue of being connected to two independent thermal baths while simultaneously being interconnected with each other. Using generating functional analysis, commonly used in statistical mechanics, we find exactly soluble expressions for their individual magnetization that define a two-dimensional nonlinear map, the equations of which have the same form as those obtained for densely connected equilibrium systems. Steady states correspond to the fixed points of this map, separating the parameter space into a rich set of nonequilibrium phases that we analyze in asymptotically high and low (nonequilibrium) temperature limits. The theoretical formalism is shown to revert to the classical nonequilibrium steady state problem for two interacting systems with a nonzero heat transfer between them that catalyzes a phase transition between ambient nonequilibrium states. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized systematic description of the Two-Wave Mixing (TWM) process in sillenite crystals allowing for arbitrary orientation of the grating vector is presented. An analytical expression for the TWM gain is obtained for the special case of plane waves in a thin crystal (|g|d«1) with large optical activity (|g|/?«1, g is the coupling constant, ? the rotatory power, d the crystal thickness). Using a two-dimensional formulation the scope of the nonlinear equations describing TWM can be extended to finite beams in arbitrary geometries and to any crystal parameters. Two promising applications of this formulation are proposed. The polarization dependence of the TWM gain is used for the flattening of Gaussian beam profiles without expanding them. The dependence of the TWM gain on the interaction length is used for the determination of the crystal orientation. Experiments carried out on Bi12GeO20 crystals of a non-standard cut are in good agreement with the results of modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa. ©2005 The Physical Society of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baker and Meese (2012) (B&M) provided an empirically driven criticism of the use of two-dimensional (2D) pixel noise in equivalent noise (EN) experiments. Their main objection was that in addition to injecting variability into the contrast detecting mechanisms, 2D noise also invokes gain control processes from a widely tuned contrast gain pool (e.g., Foley, 1994). B&M also developed a zero-dimensional (0D) noise paradigm in which all of the variance is concentrated in the mechanisms involved in the detection process. They showed that this form of noise conformed much more closely to expectations than did a 2D variant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 53A07, 53A35, 53A10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate knowledge of the time since death, or postmortem interval (PMI), has enormous legal, criminological, and psychological impact. In this study, an investigation was made to determine whether the relationship between the degradation of the human cardiac structure protein Cardiac Troponin T and PMI could be used as an indicator of time since death, thus providing a rapid, high resolution, sensitive, and automated methodology for the determination of PMI. ^ The use of Cardiac Troponin T (cTnT), a protein found in heart tissue, as a selective marker for cardiac muscle damage has shown great promise in the determination of PMI. An optimized conventional immunoassay method was developed to quantify intact and fragmented cTnT. A small sample of cardiac tissue, which is less affected than other tissues by external factors, was taken, homogenized, extracted with magnetic microparticles, separated by SDS-PAGE, and visualized with Western blot by probing with monoclonal antibody against cTnT. This step was followed by labeling and available scanners. This conventional immunoassay provides a proper detection and quantitation of cTnT protein in cardiac tissue as a complex matrix; however, this method does not provide the analyst with immediate results. Therefore, a competitive separation method using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was developed to study the interaction between human cTnT protein and monoclonal anti-TroponinT antibody. ^ Analysis of the results revealed a linear relationship between the percent of degraded cTnT and the log of the PMI, indicating that intact cTnT could be detected in human heart tissue up to 10 days postmortem at room temperature and beyond two weeks at 4C. The data presented demonstrates that this technique can provide an extended time range during which PMI can be more accurately estimated as compared to currently used methods. The data demonstrates that this technique represents a major advance in time of death determination through a fast and reliable, semi-quantitative measurement of a biochemical marker from an organ protected from outside factors. ^