958 resultados para transition metal nitrates


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature dependence of the X-ray crystal structure and powder EPR spectrum of [(HC(Ph2PO)(3))(2)CU]-(ClO4)(2)center dot 2H(2)O is reported, and the structure at room temperature confirms that reported previously. Below similar to 100 K, the data imply a geometry with near elongated tetragonal symmetry for the [(HC(Ph2PO)(3))(2)Cu](2+) complex, but on warming the two higher Cu-O bond lengths and g-values progressively converge, and by 340 K the bond lengths correspond to a compressed tetragonal geometry. The data may be interpreted satisfactorily assuming an equilibrium among the energy levels of a Cu-O-6 polyhedron subjected to Jahn-Teller vibronic coupling and a lattice strain. However, agreement with the experiment is obtained only if the orthorhombic component of the lattice strain decreases to a negligible value as the temperature approaches 340 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co-III-Fe-II-Co-III compounds derived from known dinuclear [{LnCoIII(mu-NC)}Fe-II(CN)(5)](-) complexes (L-n = N-5 or N3S2 n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and C-13 NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{LnCoIII(mu-NC)}(2)Fe-II(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe-III/II redox potential upon addition of a tripositively charged {(CoLn)-L-III} moiety. The Co-III/II redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe-II-CN-Co-III units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an effort to better understand the antiproliferative effects of the tridentate hydrazone chelators di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and di-2-pyridyl ketone benzoyl hydrazone (HPKBH), we report the coordination chemistry of these ligands with the divalent metal ions, Mn, Co, Ni, Cu, and Zn. These complexes are compared with their Fe-II analogues which were reported previously. The crystal structures of Co(PKIH)(2), Ni(PKIH)(2), Cu(PKIH)(2), Mn(PKBH)(2), Ni(PKBH)(2), Cu(PKBH)(2), and Zn(PKBH)(2) are reported where similar bis-tridenate coordination modes of the ligands are defined. In pure DMF, all complexes except the Zn-II compounds exhibit metal-centered M-III/II (Mn, Fe, Co, Ni) or M-II/I (Cu) redox processes. All complexes show ligand-centered reductions at low potential. Electrochemistry in a mixed water/DMF solvent only elicited metal-centered responses from the Co and Fe complexes. Remarkably, all complexes show antiproliferative activity against the SK-N-MC neuroepithelioma cell line similar to (HPKIH) or significantly greater than that of the (HPKBH) ligand which suggests a mechanism that does not only involve the redox activity of these complexes. In fact, we suggest that the complexes act as lipophilic transport shuttles that allow entrance to the cell and enable the delivery of both the ligand and metal which act in concert to inhibit proliferation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rate of electronic energy transfer (EET) between a naphthalene donor and an anthracene acceptor in [ZnL3]-(ClO4)(2) and [ZnL4](ClO4)(2) was determined by time-resolved fluorescence measurements, where L 3 and L 4 are the geometrical isomers of 6-[(anthracen-9-ylmethyl)amino]-trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-13-amine (L-2), substituted with either a naphthalen-1-ylmethyl or naphthalen-2-ylmethyl donor, respectively. The energy transfer rate constant, k(EET), was determined to be (0.92 +/- 0.02) x 10(9) s(-1) for the naphthalen-1-ylmethyl-substituted isomer, while that for the naphthalen-2-ylmethyl-substituted isomer is somewhat faster, with k(EET) = (1.31 +/- 0.01) x 10(9) s(-1). The solid-state structure of [(ZnLCl)-Cl-3]ClO4 has been determined, and using molecular modeling calculations, the likely distributions of solution conformations in CH3CN have been evaluated for both complexes. The calculated conformational distributions in the common trans-III N-based isomeric form gave Forster EET rate constants that account for the differences observed and are in excellent agreement with the experimental values. It is shown that the full range of conformers must be considered to accurately reproduce the observed EET kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the isomeric distribution and rearrangement of complexes of the type [CoXLn](2+,3+) (where X = Cl-, OH-, H2O, and L-n represents a pentadentate 13-, 14-, and 15-membered tetraaza or diaza-dithia (N-4 or N2S2) macrocycle bearing a pendant primary amine). The preparative procedures for chloro complexes produced almost exclusively kinetically preferred cis isomers (where the pendant primary amine is cis to the chloro ligand) that can be separated by careful cation-exchange chromatography. For L-13 and L-14 the so-called cis-V isomer is isolated as the kinetic product, and for L-15 the cis-VI form (an N-based diastereomer) is the preferred, while for the L-14(S) complex both cis-V and trans-I forms are obtained. All these complexes rearrange to form stable trans isomers in which the pendent primary amine is trans to the monodentate aqua or hydroxo ligand, depending on pH and the workup procedure. In total 11 different complexes have been studied. From these, two different trans isomers of [CoCIL14S](2+) have been characterized crystallographically for the first time in addition to a new structure of cis-V-[CoCIL14S](2+); all were isolated as their chloride perchlorate salts. Two additional isomers have been identified and characterized by NMR as reaction intermediates. The remaining seven forms correspond to the complexes already known, produced in preparative procedures. The kinetic, thermal, and baric activation parameters for all the isomerization reactions have been determined and involve large activation enthalpies and positive volumes of activation. Activation entropies indicate a very important degree of hydrogen bonding in the reactivity of the complexes, confirmed by density functional theory studies on the stability of the different isomeric forms. The isomerization processes are not simple and even some unstable intermediates have been detected and characterized as part of the above-mentioned 11 forms of the complexes. A common reaction mechanism for the isomerization reactions has been proposed for all the complexes derived from the observed kinetic and solution behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several pathways to macromonocylic polyamine ligands with pendent hydroxymethyl substituents have been explored. The new ligands have all been characterised by single-crystal, X-ray structure determinations on their complexes with Co(III) (one case) and Cu(II). As in some related systems, four-membered ring species, here oxetanes rather than azetidines, appear to be involved as reaction intermediates and can be quite readily isolated, providing reactants of potential for the construction of even more complicated multidentate ligands. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L-1 (5,7-dimethyl-3-(2',3',5'-tri-O-benzoyl-beta-D-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L-2 (5,7-dimethyl-3-beta-D-ribofuranosyl-s-triazolo [4,3-a]pyrimidine) and L-3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L-1)](NO3)(2), (Pd(bpy)(L-1)](NO3)(2), cis-Pd(L-3)(2)Cl-2, [Pd-2(L-3)(2)Cl-4]center dot H2O, cis-Pd(L-2)(2)Cl-2 and [Pt-3(L-1)(2)Cl-6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd-2(L-3)(2)Cl-4]center dot H2O complex was established by Xray crystallography. The two L-3 ligands are found in a head to tail orientation, with a (PdPd)-Pd-... distance of 3.1254(17) angstrom.L-1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L-2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L-2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and nonsynonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a dark matter'' subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Co-III complexes of the hexadentate tripodal ligands HOsen (3-(2'-aminoethylamino)-2,2-bis((2 ''-aminoethylamino) methyl) propan-1-ol) and HOten (3-(2'-aminoethylthia)-2,2-bis((2 ''-aminoethylthia) methyl) propan-1-ol) have been synthesized and fully characterized. The crystal structures of [Co(HOsen)]Cl-3 center dot H2O and [Co(HOten)](ClO4)Cl-2 are reported and in both cases the ligands coordinate as tripodal hexadentate N-6 and N3S3 donors, respectively. Cyclic voltammetry of the N3S3 coordinated complex [Co(HOten)](3+) is complicated and electrode dependent. On a Pt working electrode an irreversible Co-III/II couple ( formal potential - 157 mV versus Ag-AgCl) is seen, which is indicative of dissociation of the divalent complex formed at the electrode. The free HOten released by the dissociation of [Co(HOten)](2+) can be recaptured by Hg as shown by cyclic voltammetry experiments on a static Hg drop electrode ( or in the presence of Hg2+ ions), which leads to the formation of an electroactive Hg-II complex of the N3S3 ligand (formal potential + 60 mV versus Ag-AgCl). This behaviour is in contrast to the facile and totally reversible voltammetry of the hexaamine complex [Co(HOsen)](3+) ( formal potential (Co-III/II) - 519 mV versus Ag-AgCl), which is uncomplicated by any coupled chemical reactions. Akinetic and thermodynamic analysis of the [Co(HOten)](2+)/[Hg(HOten)](2+) system is presented on the basis of digital simulation of the experimental voltammetric data.