989 resultados para topology optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of an ultraintense laser pulse with a conical target is studied by means of numerical particle-in-cell simulations in the context of fast ignition. The divergence of the fast electron beam generated at the tip of the cone has been shown to be a crucial parameter for the efficient coupling of the ignition laser pulse to the precompressed fusion pellet. In this paper, we demonstrate that a focused hot electron beam is produced at the cone tip, provided that electron currents flowing along the surfaces of the cone sidewalls are efficiently generated. The influence of various interaction parameters over the formation of these wall currents is investigated. It is found that the strength of the electron flows is enhanced for high laser intensities, low density targets, and steep density gradients inside the cone. The hot electron energy distribution obeys a power law for energies of up to a few MeV, with the addition of a high-energy Maxwellian tail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) is an essential tool in diagnostic surgical pathology, allowing analysis of protein subcellular localization The use of IHC by different laboratories has lead to inconsistencies in published literature for several antibodies, due to either interpretative (inter-observer venation) or technical reasons These disparities have major implications in both clinical and research settings In this study, we report our experience conducting an IHC optimization of antibodies against five proteins previously identified by proteomic analysis to be breast cancer biomarkers, namely 6PGL (PGLS), CAZ2 (CAPZA2), PA2G4 (EBP1) PSD2 and TKT Large variations in the immunolocalizations and intensities were observed when manipulating the antigen retrieval method and primary antibody incubation concentration However, the use of an independent molecular analysis method provided a clear indication in choosing the appropriate biologically and functionally relevant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workspace analysis and optimization are important in a manipulator design. As the complete workspace of a 6-DOF manipulator is embedded into a 6-imensional space, it is difficult to quantify and qualify it. Most literatures only considered the 3-D sub workspaces of the complete 6-D workspace. In this paper, a finite-partition approach of the Special Euclidean group SE(3) is proposed based on the topology properties of SE(3), which is the product of Special Orthogonal group SO(3) and R^3. It is known that the SO(3) is homeomorphic to a solid ball D^3 with antipodal points identified while the geometry of R^3 can be regarded as a cuboid. The complete 6-D workspace SE(3) is at the first time parametrically and proportionally partitioned into a number of elements with uniform convergence based on its geometry. As a result, a basis volume element of SE(3) is formed by the product of a basis volume element of R^3 and a basis volume element of SO(3), which is the product of a basis volume element of D^3 and its associated integration measure. By this way, the integration of the complete 6-D workspace volume becomes the simple summation of the basis volume elements of SE(3). Two new global performance indices, i.e., workspace volume ratio Wr and global condition index GCI, are defined over the complete 6-D workspace. A newly proposed 3 RPPS parallel manipulator is optimized based on this finite-partition approach. As a result, the optimal dimensions for maximal workspace are obtained, and the optimal performance points in the workspace are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional radial basis function (RBF) network optimization methods, such as orthogonal least squares or the two-stage selection, can produce a sparse network with satisfactory generalization capability. However, the RBF width, as a nonlinear parameter in the network, is not easy to determine. In the aforementioned methods, the width is always pre-determined, either by trial-and-error, or generated randomly. Furthermore, all hidden nodes share the same RBF width. This will inevitably reduce the network performance, and more RBF centres may then be needed to meet a desired modelling specification. In this paper we investigate a new two-stage construction algorithm for RBF networks. It utilizes the particle swarm optimization method to search for the optimal RBF centres and their associated widths. Although the new method needs more computation than conventional approaches, it can greatly reduce the model size and improve model generalization performance. The effectiveness of the proposed technique is confirmed by two numerical simulation examples.