991 resultados para titanium oxide
Resumo:
Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.
Resumo:
During the antarctic summer season in 1984 and 1986 field studies and laboratory investigations of the Mesozoic Intrusive Suite of the Palmer Archipel were carried out in cooperation with the Chilean Antarctic Institute and the University of Concepcion, Volcanic formations and intrusive series are the dominant exposed rocks together with very subordinate metasediments. Different petrological and isotopic data allow to divide the Antarctic Intrusive Suite into two intrusive types: a) Palmer Batholith (Lower Cenozoic) b) Costa Danco intrusive rocks (Upper Cretaceous). Both types belong to a calc-alkaline series. The granitoid rocks show an I-type-affinity. Ore minerals (pyrite, chalcopyrite, bornite, covellite, cuprite, pyrrhotite, magnetite and ilmenite) are mainly restricted to the intermediate rock types (e. g. granodiorites}. Propylitisation and kaolinisation are the observed alteration types, which suggest, together with the disseminated and vein-like ore fabrics the comparison with the andean Porphyry-Copper- and vein-type-deposits. The volcanic formations are subdivided into a) the Upper Cretaceous Wiencke Formation, which is composed of andesites and andesitic breccias, and b) into the Jurassic Lautaro Formation with basaltic, andesitic, dacitic and some rhyolitic rocks together with volcanic breccias. These calc-alkaline volcanic rocks apparently are part of an island are. A strong alteration of primary minerals is very common; however, the low ore mineral content does not change significantly within the different alteration types.
Resumo:
Evidence for the Chesapeake Bay Crater as the source for New Jersey continental margin ejecta is provided by fine-grained tektites and coarse-grained unmelted ejecta. The Upper Eocene ejecta deposit, now demonstrated to be part of the North American strewn field, occurs on the New Jersey continental margin at Ocean Drilling Program (ODP) Sites 904 and 903. The mineralogy, major oxide composition of the ejecta materials, and biostratigraphic age of the enclosing sediments link the origin of these ejecta to the recently recognized Chesapeake Bay impact crater, located only 330 km away. Sediments associated with the ejecta provide information about the dynamics of impact events. The 35-cm-thick ejecta-bearing layer can be subdivided into three subunits that indicate a sequence of events. Bottom subunit III documents sediment failure and deposition of gravel-sized fragments, middle subunit II records deposition of abundant sand-sized ejecta by gravity settling, and upper subunit I contains a 12-cm-thick sedimentary deposit containing rare silt-sized tektites and evidence of waning currents. These events are interpreted by linking sediment deposition to seismic ground motion and subsequent tsunami waves triggered by both the Chesapeake Bay impact and slope failures.
(Table 1a) Microprobe analyses of pyroxenites from the ophiolite complex in the Hunter Fracture Zone