1000 resultados para timelike surface


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum, spreading of liquid drops impacting on solid surfaces textured with unidirectional parallel grooves is studied for drop Weber number in the range 1-100 focusing on the role of texture geometry and wettability. The maximum spread factor of impacting drops measured perpendicular to grooves; beta(m,perpendicular to) is seen to be less than, that:measured parallel to grooves, beta(m,perpendicular to).The difference between beta(m,perpendicular to), and beta(m,parallel to) increases with drop impact velocity. This deviation of beta(m,perpendicular to) from beta(m,parallel to) is analyzed by considering the possible mechanisms, correspond, ing to experimental observations (1) impregnation of drop into the grooves, (2) convex shape of liquid vapor interface near contact line at maximum spreading, and (3) contact line pinning of spreading drop at the pillar edges by incorporating them into an energy conservation-based model. The analysis reveals that contact line pinning offers a physically meaningful justification of the observed: deviation of beta(m,perpendicular to) from beta(m,parallel to) compared to other possible candidates. A unified model, incorporating all the above-mentioned mechanisms, is formulated, which predicts beta(m,perpendicular to) on several groove-textured surfaces made of intrinsically hydrophilic and hydrophobic materials with an average error of 8.3%. The effect of groove-texture geometrical parameters,on maximum drop spreading is explained using this unified model. A special case of the unified model, with contact line pinning, absent, predicts beta(m,parallel to) with an average error of 6.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study moduli spaces M-X (r, c(1), c(2)) parametrizing slope semistable vector bundles of rank r and fixed Chern classes c(1), c(2) on a ruled surface whose base is a rational nodal curve. We showthat under certain conditions, these moduli spaces are irreducible, smooth and rational (when non-empty). We also prove that they are non-empty in some cases. We show that for a rational ruled surface defined over real numbers, the moduli space M-X (r, c(1), c(2)) is rational as a variety defined over R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect of particle size of sand and the surface asperities of reinforcing material on their interlocking mechanism and its influence on the interfacial shear strength under direct sliding condition. Three sands of different sizes with similar morphological characteristics and four different types of reinforcing materials with different surface features were used in this study. Interface direct shear tests on these materials were performed in a specially developed symmetric loading interface direct shear test setup. Morphological characteristics of sand particles were determined from digital image analysis and the surface roughness of the reinforcing materials was measured using an analytical expression developed for this purpose. Interface direct shear tests at three different normal stresses were carried out by shearing the sand on the reinforcing material fixed to a smooth surface. Test results revealed that the peak interfacial friction and dilation angles are hugely dependent upon the interlocking between the sand particles and the asperities of reinforcing material, which in turn depends on the relative size of sand particles and asperities. Asperity ratio (AS/D-50) of interlocking materials, which is defined as the ratio of asperity spacing of the reinforcing material and the mean particle size of sand was found to govern the interfacial shear strength with highest interfacial strength measured when the asperity ratio was equal to one, which represents the closest fitting of sand particles into the asperities. It was also understood that the surface roughness of the reinforcing material influences the shear strength to an extent, the influence being more pronounced in coarser particles. Shear bands in the interface shear tests were analysed through image segmentation technique and it was observed that the ratio of shear band thickness (t) to the median particle size (D-50) was maximum when the AS/D-50 was equal to one. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

结合纳米硬度技术测量各类薄膜和块体材料表层的纳米压痕硬度、弹性模量、断裂韧性、膜厚、微结构的弯曲变形,采用纳米划痕硬度技术测量各类薄膜和块体材料的粗糙度、临界附着力、摩擦系数、划痕横剖面.纳米硬度计是检测材料表层微米乃至几十纳米力学性能的先进仪器,可广泛应用于表面工程中的质量检测.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel composite coating was synthesized by laser alloying of zirconium nanoparticles on an austenite stainless steel surface using a pulsed Nd:YAG laser. The coating contained duplex microstructures comprising an amorphous phase and an austenitic matrix. A discontinuous zirconium-containing region formed at a depth of 16 mum below the surface. The amorphous phase was present in the zirconium-rich region, with the composition of zirconium ranging from 7.8 to 14.5 at. pet. The formation of the amorphous phase was attributed to the zirconium addition. The hardness, corrosion, and wear-corrosion resistance of the irradiated coating were evidently enhanced compared to those of the stainless steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization. The enthalpy method was applied to solve this two-phase axisymmetrical melting problem Computational results of temperature fields were obtained, which provide useful information to practical laser treatment processing. The validity of enthalpy method in solving such problems is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of electron beam surface hardening treatment on the microstructure and hardness of AISI D3 tool steel have been investigated in this paper. The results showed that the microstructure of the hardened layer consisted of martensite, a dispersion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic remelting and cladding tests with laminar plasma technology on metals have been conducted in order to demonstrate the possibility of the technology applied in material surface modification. The experimental results show that the properties of the modified layers of the cast iron surface can be improved notably by the remelting treatment and those of the stainless steel by the cladding treatment. The related results are also verified by microscopic studies such as scanning electron microscopic (SEM) observations, energy dispersive spectra (EDS) analysis and the Vickers hardness measurements of the surface modified layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to investigate the ultrafine-grained (UFG) microstructures in the surface layer of an aluminum alloy 7075 heavily worked by ultrasonic shot peening. Conventional and high-resolution electron microscopy was performed at various depths of the deformed layer. Results showed that UFG structures were introdued into the surface layer of 62 μm thick. With increasing strain, the various microstructural features, e.g., the dislocation emission source, elongated microbands, dislocation cells, dislocation cell blocks, equiaxed submicro-, and nano-crystal grains etc., were successively produced. The grain subdivision into the subgrains was found to be the main mechanism responsible for grain refinement. The simultaneous evolution of high boundary misorientations was ascribed to the subgrain boundary rotation for accommodating further strains. Formed microstructures were highly nonequilibratory.  2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfully observed using a novel approach. A specially designed copper mirror with a boron nitride film coated on its surface central-region is employed to avoid the effect of intensive light emitted from the arc column upon the observation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surface of the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argon as the plasma-forming gas.