947 resultados para three dimensional modeling


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integral Masonry System consisting of intersecting steel trusses alo ng each of the three dimensional directions of space on walls and slabs using any masonry material, had yet been backed up by the previous adobe test for seismic areas. This paper presents the comparison this last test and the adaptation of the IMS using h ollow brick. A prototype based on a two storey model house (6mx6mx6m) has being also built in two different scales in order to maximize the load and size of the shake table: the first one half size the whole building (3mx3mx3m) and the second, a quarter of the real size (3mx3mx6m). Both tests have suffered some mild to moderate damages while supporting the higher seismic action subjected by the shake table, without even fissuring the first test and with very few damages the second one. The thickness of the hollow brick wall and the diameter of the tree - dimensional truss reinforcement were scaled to the real size test in order to ascertain its great structural behaviour in relation to the previous structural model calculations. The aim of this study is to sum marize the results of the research collaboration between the ETSAM - UPM and the PUCP in whose laboratory these tests were carried out.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La Fotogrametría, como ciencia y técnica de obtención de información tridimensional del espacio objeto a partir de imágenes bidimensionales, requiere de medidas de precisión y en ese contexto, la calibración geométrica de cámaras ocupa un lugar importante. El conocimiento de la geometría interna de la cámara es fundamental para lograr mayor precisión en las medidas realizadas. En Fotogrametría Aérea se utilizan cámaras métricas (fabricadas exclusivamente para aplicaciones cartográficas), que incluyen objetivos fotográficos con sistemas de lentes complejos y de alta calidad. Pero en Fotogrametría de Objeto Cercano se está trabajando cada vez con más asiduidad con cámaras no métricas, con ópticas de peor calidad que exigen una calibración geométrica antes o después de cada trabajo. El proceso de calibración encierra tres conceptos fundamentales: modelo de cámara, modelo de distorsión y método de calibración. El modelo de cámara es un modelo matemático que aproxima la transformación proyectiva original a la realidad física de las lentes. Ese modelo matemático incluye una serie de parámetros entre los que se encuentran los correspondientes al modelo de distorsión, que se encarga de corregir los errores sistemáticos de la imagen. Finalmente, el método de calibración propone el método de estimación de los parámetros del modelo matemático y la técnica de optimización a emplear. En esta Tesis se propone la utilización de un patrón de calibración bidimensional que se desplaza en la dirección del eje óptico de la cámara, ofreciendo así tridimensionalidad a la escena fotografiada. El patrón incluye un número elevado de marcas, lo que permite realizar ensayos con distintas configuraciones geométricas. Tomando el modelo de proyección perspectiva (o pinhole) como modelo de cámara, se realizan ensayos con tres modelos de distorsión diferentes, el clásico de distorsión radial y tangencial propuesto por D.C. Brown, una aproximación por polinomios de Legendre y una interpolación bicúbica. De la combinación de diferentes configuraciones geométricas y del modelo de distorsión más adecuado, se llega al establecimiento de una metodología de calibración óptima. Para ayudar a la elección se realiza un estudio de las precisiones obtenidas en los distintos ensayos y un control estereoscópico de un panel test construido al efecto. ABSTRACT Photogrammetry, as science and technique for obtaining three-dimensional information of the space object from two-dimensional images, requires measurements of precision and in that context, the geometric camera calibration occupies an important place. The knowledge of the internal geometry of the camera is fundamental to achieve greater precision in measurements made. Metric cameras (manufactured exclusively for cartographic applications), including photographic lenses with complex lenses and high quality systems are used in Aerial Photogrammetry. But in Close Range Photogrammetry is working increasingly more frequently with non-metric cameras, worst quality optical components which require a geometric calibration before or after each job. The calibration process contains three fundamental concepts: camera model, distortion model and method of calibration. The camera model is a mathematical model that approximates the original projective transformation to the physical reality of the lenses. The mathematical model includes a series of parameters which include the correspondents to the model of distortion, which is in charge of correcting the systematic errors of the image. Finally, the calibration method proposes the method of estimation of the parameters of the mathematical modeling and optimization technique to employ. This Thesis is proposing the use of a pattern of two dimensional calibration that moves in the direction of the optical axis of the camera, thus offering three-dimensionality to the photographed scene. The pattern includes a large number of marks, which allows testing with different geometric configurations. Taking the projection model perspective (or pinhole) as a model of camera, tests are performed with three different models of distortion, the classical of distortion radial and tangential proposed by D.C. Brown, an approximation by Legendre polynomials and bicubic interpolation. From the combination of different geometric configurations and the most suitable distortion model, brings the establishment of a methodology for optimal calibration. To help the election, a study of the information obtained in the various tests and a purpose built test panel stereoscopic control is performed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El cuerpo, como conjunto organizado de partes que configuran el organismo, es una entidad metamórfica. El ser humano procura dar continuidad a esta condición mutante que le caracteriza, mediante diversas acciones de carácter arquitectónico. A partir de la observación de los procesos naturales, el individuo se autodefine artificialmente, transformando su realidad innata en una versión distorsionada de sí misma. Por adición, sustracción o modificación, la piel como última capa natural, se convierte en lienzo de manipulación plástica primordial para asegurar la existencia y controlar la identidad, individual y colectiva. La evolución experimental de estas intervenciones primarias, permite suplantar la piel natural por una reinterpretación construida; una piel exenta y desmontable con la que proyectar un yo diferente provisionalmente. El uso constante de esta prótesis removible e intercambiable, provoca que el cuerpo desnudo se transforme en un cuerpo vestido, en un entorno social en el que la desnudez deja de ser el estado natural del ser humano. La piel artificial se construye mediante una gran diversidad de procesos proyectuales, siendo la transformación de la superficie bidimensional en envolvente tridimensional el más utilizado a lo largo de la existencia de la vestimenta. El plano, concebido como principal formato de revestimiento humano, se adapta a su irregularidad topográfica por modelado, perforación, fragmentación, trazado, parametrización e interacción, transformándose en una envolvente cada vez más compleja y perfecta. Su diseño implica la consideración de variables como la dimensión y la escala, la función y la forma, la estructura, el material y la construcción, la técnica y los instrumentos. La vestimenta es una arquitectura habitacional individual, un límite corporal que relaciona el espacio entre el exterior e el interior, lo ajeno y lo propio, el tú y el yo; un filtro concreto y abstracto simultáneamente; una interfaz en donde el vestido es el continente y el cuerpo su contenido. ABSTRACT The body as a whole, organized of parts that make up the organism, is a metamorphic entity. The human being seeks to give continuity to this mutant condition which characterizes him through various actions of architectural character. From the observation of the natural processes, the individual defines itself artificially, transforming its innate reality into a distorted version of itself. By addition, subtraction or modification, the skin, as the last natural layer, becomes canvas of primary plastic handling in order to ensure the existence and to control the identity, both individual and collective. The experimental evolution of these primary interventions allows to impersonate the natural skin by a constructed reinterpretation; a free and detachable skin together with which to be able to project, temporarily, a different “I”. The constant use of this removable and interchangeable prosthesis causes the naked body to be transformed into a dressed body, in a social setting in which the nudity is no longer the natural state of the human being. The artificial skin is constructed by a variety of projectual processes; the most used throughout the existence of the outfit is transforming the two-dimensional surface into a three-dimensional covering. The plan, conceived as the main human lining format, adapts to its topographic irregularity by modeling, drilling, fragmentation, outline, parameters and interaction, thus becoming a type of increasingly more complex and perfect covering. Its design implies the consideration of different variables such as the dimension and the scale, the function and the shape, the structure, the material and the construction, the technique and the instruments. The clothing is an individual residential architecture, a body boundary which relates the space between outside and inside, between the external and the self, between “you” and “I”; at the same time a specific and abstract filter; an interface where the dress is the container and the body its content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Repeated, specific interactions between capsid protein (CP) subunits direct virus capsid assembly and exemplify regulated protein–protein interactions. The results presented here reveal a striking in vivo switch in CP assembly. Using cryoelectron microscopy, three-dimensional image reconstruction, and molecular modeling, we show that brome mosaic virus (BMV) CP can assemble in vivo two remarkably distinct capsids that selectively package BMV-derived RNAs in the absence of BMV RNA replication: a 180-subunit capsid indistinguishable from virions produced in natural infections and a previously unobserved BMV capsid type with 120 subunits arranged as 60 CP dimers. Each such dimer contains two CPs in distinct, nonequivalent environments, in contrast to the quasi-equivalent CP environments throughout the 180-subunit capsid. This 120-subunit capsid utilizes most of the CP interactions of the 180-subunit capsid plus nonequivalent CP–CP interactions. Thus, the CP of BMV, and perhaps other viruses, can encode CP–CP interactions that are not apparent from mature virions and may function in assembly or disassembly. Shared structural features suggest that the 120- and 180-subunit capsids share assembly steps and that a common pentamer of CP dimers may be an important assembly intermediate. The ability of a single CP to switch between distinct capsids by means of alternate interactions also implies reduced evolutionary barriers between different capsid structures. The in vivo switch between alternate BMV capsids is controlled by the RNA packaged: a natural BMV genomic RNA was packaged in 180-subunit capsids, whereas an engineered mRNA containing only the BMV CP gene was packaged in 120-subunit capsids. RNA features can thus direct the assembly of a ribonucleoprotein complex between alternate structural pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epitopes depending on three-dimensional folding of proteins have during recent years been acknowledged to be main targets for many autoantibodies. However, a detailed resolution of conformation-dependent epitopes has to date not been achieved in spite of its importance for understanding the complex interaction between an autoantigen and the immune system. In analysis of immunodominant epitopes of the U1-70K protein, the major autoantigen recognized by human ribonucleoprotein (RNP)-positive sera, we have used diversely mutated recombinant Drosophila melanogaster 70K proteins as antigens in assays for human anti-RNP antibodies. Thus, the contribution of individual amino acids to antigenicity could be assayed with the overall structure of the major antigenic domain preserved, and analysis of how antigenicity can be reconstituted rather than obliterated was enabled. Our results reveal that amino acid residue 125 is situated at a crucial position for recognition by human anti-RNP autoantibodies and that flanking residues at positions 119–126 also appear to be of utmost importance for recognition. These results are discussed in relation to structural models of RNA-binding domains, and tertiary structure modeling indicates that the residues 119–126 are situated at easily accessible positions in the end of an α-helix in the RNA binding region. This study identifies a major conformation-dependent epitope of the U1-70K protein and demonstrates the significance of individual amino acids in conformational epitopes. Using this model, we believe it will be possible to analyze other immunodominant regions in which protein conformation has a strong impact.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability of the cornea to transmit light while being mechanically resilient is directly attributable to the formation of an extracellular matrix containing orthogonal sheets of collagen fibrils. The detailed structure of the fibrils and how this structure underpins the mechanical properties and organization of the cornea is understood poorly. In this study, we used automated electron tomography to study the three-dimensional organization of molecules in corneal collagen fibrils. The reconstructions show that the collagen molecules in the 36-nm diameter collagen fibrils are organized into microfibrils (≈4-nm diameter) that are tilted by ≈15° to the fibril long axis in a right-handed helix. An unexpected finding was that the microfibrils exhibit a constant-tilt angle independent of radial position within the fibril. This feature suggests that microfibrils in concentric layers are not always parallel to each other and cannot retain the same neighbors between layers. Analysis of the lateral structure shows that the microfibrils exhibit regions of order and disorder within the 67-nm axial repeat of collagen fibrils. Furthermore, the microfibrils are ordered at three specific regions of the axial repeat of collagen fibrils that correspond to the N- and C-telopeptides and the d-band of the gap zone. The reconstructions also show macromolecules binding to the fibril surface at sites that correspond precisely to where the microfibrils are most orderly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factor–factor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factor–factor VIIa interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human ciliary neurotrophic factor (hCNTF), which promotes the cell survival and differentiation of motor and other neurons, is a protein belonging structurally to the alpha-helical cytokine family. hCNTF was subjected to three-dimensional structure modeling and site-directed mutagenesis to analyze its structure-function relationship. The replacement of Lys-155 with any other amino acid residue resulted in abolishment of neural cell survival activity, and some of the Glu-153 mutant proteins had 5- to 10-fold higher biological activity. The D1 cap region (around the boundary between the CD loop and helix D) of hCNTF, including both Glu-153 and Lys-155, was shown to play a key role in the biological activity of hCNTF as one of the putative receptor-recognition sites. In this article, the D1 cap region of the 4-helix-bundle proteins is proposed to be important in receptor recognition and biological activity common to alpha-helical cytokine proteins reactive with gp130, a component protein of the receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Em testes nos quais uma quantidade considerável de indivíduos não dispõe de tempo suciente para responder todos os itens temos o que é chamado de efeito de Speededness. O uso do modelo unidimensional da Teoria da Resposta ao Item (TRI) em testes com speededness pode nos levar a uma série de interpretações errôneas uma vez que nesse modelo é suposto que os respondentes possuem tempo suciente para responder todos os itens. Nesse trabalho, desenvolvemos uma análise Bayesiana do modelo tri-dimensional da TRI proposto por Wollack e Cohen (2005) considerando uma estrutura de dependência entre as distribuições a priori dos traços latentes a qual modelamos com o uso de cópulas. Apresentamos um processo de estimação para o modelo proposto e fazemos um estudo de simulação comparativo com a análise realizada por Bazan et al. (2010) na qual foi utilizada distribuições a priori independentes para os traços latentes. Finalmente, fazemos uma análise de sensibilidade do modelo em estudo e apresentamos uma aplicação levando em conta um conjunto de dados reais proveniente de um subteste do EGRA, chamado de Nonsense Words, realizado no Peru em 2007. Nesse subteste os alunos são avaliados por via oral efetuando a leitura, sequencialmente, de 50 palavras sem sentidos em 60 segundos o que caracteriza a presença do efeito speededness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, there is an increasing number of robotic applications that need to act in real three-dimensional (3D) scenarios. In this paper we present a new mobile robotics orientated 3D registration method that improves previous Iterative Closest Points based solutions both in speed and accuracy. As an initial step, we perform a low cost computational method to obtain descriptions for 3D scenes planar surfaces. Then, from these descriptions we apply a force system in order to compute accurately and efficiently a six degrees of freedom egomotion. We describe the basis of our approach and demonstrate its validity with several experiments using different kinds of 3D sensors and different 3D real environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.