954 resultados para thermal treatment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background On-site wastewater treatment system (OWTS) siting, design and management has traditionally been based on site specific conditions with little regard to the surrounding environment or the cumulative effect of other systems in the environment. The general approach has been to apply the same framework of standards and regulations to all sites equally, regardless of the sensitivity, or lack thereof, to the receiving environment. Consequently, this has led to the continuing poor performance and failure of on-site systems, resulting in environmental and public health consequences. As a result, there is increasing realisation that more scientifically robust evaluations in regard to site assessment and the underlying ground conditions are needed. Risk-based approaches to on-site system siting, design and management are considered the most appropriate means of improvement to the current standards and codes for on-site wastewater treatment systems. The Project Research in relation to this project was undertaken within the Gold Coast City Council region, the major focus being the semi-urban, rural residential and hinterland areas of the city that are not serviced by centralised treatment systems. The Gold Coast has over 15,000 on-site systems in use, with approximately 66% being common septic tank-subsurface dispersal systems. A recent study evaluating the performance of these systems within the Gold Coast area showed approximately 90% were not meeting the specified guidelines for effluent treatment and dispersal. The main focus of this research was to incorporate strong scientific knowledge into an integrated risk assessment process to allow suitable management practices to be set in place to mitigate the inherent risks. To achieve this, research was undertaken focusing on three main aspects involved with the performance and management of OWTS. Firstly, an investigation into the suitability of soil for providing appropriate effluent renovation was conducted. This involved detailed soil investigations, laboratory analysis and the use of multivariate statistical methods for analysing soil information. The outcomes of these investigations were developed into a framework for assessing soil suitability for effluent renovation. This formed the basis for the assessment of OWTS siting and design risks employed in the developed risk framework. Secondly, an assessment of the environmental and public health risks was performed specifically related the release of contaminants from OWTS. This involved detailed groundwater and surface water sampling and analysis to assess the current and potential risks of contamination throughout the Gold Coast region. Additionally, the assessment of public health risk incorporated the use of bacterial source tracking methods to identify the different sources of fecal contamination within monitored regions. Antibiotic resistance pattern analysis was utilised to determine the extent of human faecal contamination, with the outcomes utilised for providing a more indicative public health assessment. Finally, the outcomes of both the soil suitability assessment and ground and surface water monitoring was utilised for the development of the integrated risk framework. The research outcomes achieved through this project enabled the primary research aims and objects to be accomplished. This in turn would enable Gold Coast City Council to provide more appropriate assessment and management guidelines based on robust scientific knowledge which will ultimately ensure that the potential environmental and public health impacts resulting from on-site wastewater treatment is minimised. As part of the implementation of suitable management strategies, a critical point monitoring program (CPM) was formulated. This entailed the identification of the key critical parameters that contribute to the characterised risks at monitored locations within the study area. The CPM will allow more direct procedures to be implemented, targeting the specific hazards at sensitive areas throughout Gold Coast region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance. The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context. The project The primary aims of the research project are: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types. In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability. The report This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions. Field study and outcomes Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following: • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed. • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden. • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility. • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa. The important outcomes from the testing program include the following: • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific. • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies. • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS. • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses. • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64. • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels. • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent. In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The onsite treatment of sewage and effluent disposal is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. It is important therefore that careful consideration is given to the design and location of onsite sewage treatment systems. This requires an understanding of the factors that influence treatment performance. The use of subsurface absorption systems is the most common form of effluent disposal for onsite sewage treatment, particularly for septic tanks. Also, in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Site specific factors play a key role in the onsite treatment of sewage. The project The primary aims of the research project were: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to evaluate current research relating to onsite sewage treatment; and, • to identify key issues where currently there is a lack of relevant research. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of this research project has been on septic tanks. By implication, the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. Five broad categories of soil types prevalent in the Brisbane region have been considered in this project. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each of the different soil types. In the initial phase of the investigation, the majority of the systems evaluated were septic tanks. However, a small number of aerobic wastewater treatment systems (AWTS) were also included. The primary aim was to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of each different type of system investigated was relatively small. Consequently, this does not permit a statistical analysis to be undertaken of the results obtained for comparing different systems. This is an important issue considering the large number of soil physico-chemical parameters and landscape factors that can influence treatment performance and their wide variability. The report This report is the last in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The project component discussed in the current report outlines the detailed soil investigations undertaken at a selected number of sites. In the initial field sampling, a number of soil chemical properties were assessed as indicators to investigate the extent of effluent flow and to help understand what soil factors renovate the applied effluent. The soil profile attributes, especially texture, structure and moisture regime were examined more in an engineering sense to determine the effect of movement of water into and through the soil. It is important to note that it is not only the physical characteristics, but also the chemical characteristics of the soil as well as landscape factors play a key role in the effluent renovation process. In order to understand the complex processes taking place in a subsurface effluent disposal area, influential parameters were identified using soil chemical concepts. Accordingly, the primary focus of this final phase of the research project was to identify linkages between various soil chemical parameters and landscape patterns and their contribution to the effluent renovation process. The research outcomes will contribute to the development of robust criteria for evaluating the performance of subsurface effluent disposal systems. The outcomes The key findings from the soil investigations undertaken are: • Effluent renovation is primarily undertaken by a combination of various soil physico-chemical parameters and landscape factors, thereby making the effluent renovation processes strongly site dependent. • Decisions regarding site suitability for effluent disposal should not be based purely in terms of the soil type. A number of other factors such as the site location in the catena, the drainage characteristics and other physical and chemical characteristics, also exert a strong influence on site suitability. • Sites, which are difficult to characterise in terms of suitability for effluent disposal, will require a detailed soil physical and chemical analysis to be undertaken to a minimum depth of at least 1.2 m. • The Ca:Mg ratio and Exchangeable Sodium Percentage are important parameters in soil suitability assessment. A Ca:Mg ratio of less than 0.5 would generally indicate a high ESP. This in turn would mean that Na and possibly Mg are the dominant exchangeable cations, leading to probable clay dispersion. • A Ca:Mg ratio greater than 0.5 would generally indicate a low ESP in the profile, which in turn indicates increased soil stability. • In higher clay percentage soils, low ESP can have a significant effect. • The presence of high exchangeable Na can be counteracted by the presence of swelling clays, and an exchange complex co-dominated by exchangeable Ca and exchangeable Mg. This aids absorption of cations at depth, thereby reducing the likelihood of dispersion. • Salt is continually added to the soil by the effluent and problems may arise if the added salts accumulate to a concentration that is harmful to the soil structure. Under such conditions, good drainage is essential in order to allow continuous movement of water and salt through the profile. Therefore, for a site to be sustainable, it would have a maximum application rate of effluent. This would be dependent on subsurface characteristics and the surface area available for effluent disposal. • The dosing regime for effluent disposal can play a significant role in the prevention of salt accumulation in the case of poorly draining sites. Though intermittent dosing was not considered satisfactory for the removal of the clogging mat layer, it has positive attributes in the context of removal of accumulated salts in the soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following summary report provides a concise overview of the research undertaken and the outcomes derived from the performance evaluation study of onsite sewage treatment systems. Additionally, a number of recommendations have been provided to enhance the treatment performance of these systems. This report also identifies a number of areas, which merit further investigations. The focus of the study was on subsurface effluent disposal systems. The reader is referred to the three project reports that were produced for more detailed information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Postoperative nausea and vomiting is a common and unpleasant phenomenon and current therapies are not always effective for all patients. Aromatherapy has been suggested as a possible addition to the available treatment strategies. Objectives: This review sought to establish what effect the use of aromatherapy has on the severity and duration of established postoperative nausea and vomiting and whether aromatherapy can be used with safety and clinical effectiveness comparable to standard pharmacological treatments. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 3); MEDLINE; EMBASE; CINAHL; CAM on PubMed; Meditext; LILACS database; and ISI Web of Science as well as grey literature sources and the reference lists of retrieved articles. We conducted database searches up to August 2011. Selection criteria: We included all randomized controlled trials (RCTs) and controlled clinical trials (CCTs) where aromatherapy was used to treat postoperative nausea and vomiting. Interventions were all types of aromatherapy. Aromatherapy was defined as the inhalation of the vapours of any substance for the purposes of a therapeutic benefit. Primary outcomes were the severity and duration of postoperative nausea and vomiting. Secondary outcomes were adverse reactions, use of rescue anti-emetics and patient satisfaction with treatment. Data collection and analysis: Two review authors assessed risk of bias in the included studies and extracted data. As all outcomes analysed were dichotomous, we used a fixed-effects model and calculated relative risk (RR) with associated 95% confidence interval (95% CI). Results: The nine included studies comprised six RCTs and three CCTs with a total of 402 participants. The mean age and range data for all participants were not reported for all studies. The method of randomization in four of the six included RCTs was explicitly stated and adequate. Incomplete reporting of data affected the completeness of the analysis. Compared with placebo, isopropyl alcohol vapour inhalation was effective in reducing the proportion of participants requiring rescue anti-emetics (RR 0.30, 95%CI 0.09 to 1.00, P = 0.05). However, compared with standard anti-emetic treatment, isopropyl alcohol was not effective in reducing the proportion of participants requiring rescue anti-emetics (RR 0.66 95%CI 0.39 to 1.13, P = 0.13) except when the data from a possibly confounded study were included (RR 0.66, 95% CI 0.45 to 0.98, P = 0.04). Where studies reported data on patient satisfaction with aromatherapy, there were no statistically significant differences between the groups (RR 1.12, 95%CI 0.62 to 2.03, P = 0.71). Authors' conclusions: Isopropyl alcohol was more effective than saline placebo for reducing postoperative nausea and vomiting but less effective than standard anti-emetic drugs. There is currently no reliable evidence for the use of peppermint oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial fibrillation increases the risk of stroke. Dronedarone has been shown to reduce the composite of hospitalizations due to cardiovascular events or death, in subjects with intermittent atrial fibrillation or flutter. Recently, dronedarone has been tested in subjects with permanent atrial fibrillation in the PALLAS (permanent atrial fibrillation outcome study using dronedarone on top of standard therapy) trial, and this clinical trial is evaluated in this paper. PALLAS was stopped early as there was an increased incidence of cardiovascular events in the dronedarone group. Dronedarone also increased the rate of hospitalizations in PALLAS. As a result of PALLAS, dronedarone has been contraindicated in permanent atrial fibrillation. The outcomes of PALLAS highlight a discontinuity between dronedarone actions in permanent and intermittent atrial fibrillation. The mechanism(s) underlying the detrimental effects of dronedarone in permanent atrial fibrillation are unknown at present and need to be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Exercise for Health was a randomized, controlled trial designed to evaluate two modes of delivering (face-to-face [FtF] and over-the-telephone [Tel]) an 8-month translational exercise intervention, commencing 6-weeks post-breast cancer surgery (PS). Methods Outcomes included quality of life (QoL), function (fitness and upper-body) and treatment-related side effects (fatigue, lymphoedema, body mass index, menopausal symptoms, anxiety, depression and pain). Generalised estimating equation modelling determined time (baseline [5-weeks PS], mid-intervention [6-months PS], post-intervention [12-months PS]), group (FtF, Tel, Usual Care [UC]) and time-by-group effects. 194 women representative of the breast cancer population were randomised to the FtF (n=67), Tel (n=67) and UC (n=60) groups. Results: There were significant (p<0.05) interaction effects on QoL, fitness and fatigue, with differences being observed between the treatment groups and the UC group. Trends observed for the treatment groups were similar. The treatment groups reported improved QoL, fitness and fatigue over time and changes observed between baseline and post-intervention were clinically relevant. In contrast, the UC group experienced no change, or worsening QoL, fitness and fatigue, mid-intervention. Although improvements in the UC group occurred by 12-months post-surgery, the change did not meet the clinically relevant threshold. There were no differences in other treatment-related side-effects between groups. Conclusion This translational intervention trial, delivered either face-to-face or over-the-telephone, supports exercise as a form of adjuvant breast cancer therapy that can prevent declines in fitness and function during treatment and optimise recovery post-treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constructed wetlands are a common structural treatment measure employed to remove stormwater pollutants and forms an important part of the Water Sensitive Urban Design (WSUD) treatment suite. In a constructed wetland, a range of processes such as settling, filtration, adsorption, and biological uptake play a role in stormwater treatment. Occurrence and effectiveness of these processes are variable and influenced by hydraulic, chemical and biological factors. The influence of hydraulic factors on treatment processes are of particular concern. This paper presents outcomes of a comprehensive study undertaken to define the treatment performance of a constructed wetland highlighting the influence of hydraulic factors. The study included field monitoring of a well established constructed wetland for quantity and quality factors, development of a conceptual hydraulic model to simulate water movement within the wetland and multivariate analysis of quantity and quality data to investigate correlations and to define linkages between treatment performance and influential hydraulic factors. Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP) concentrations formed the primary pollutant parameters investigated in the data analysis. The outcomes of the analysis revealed significant reduction in event mean concentrations of all three pollutants species. Treatment performance of the wetland was significantly different for storm events above and below the prescribed design event. For events below design event, TSS and TN load reduction was comparatively high and strongly influenced by high retention time. For events above design event, TP load reduction was comparatively high and was found to be influenced by the characteristics of TP wash-off from catchment surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual Reality (VR) techniques are increasingly being used in education about and in the treatment of certain types of mental illness. Research indicates VR is delivering on it's promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1−2% of the population. A significant research project being undertaken at the University of Queensland has constructed virtual environments that reproduce the phenomena experienced by patients who have psychosis. The VR environment will allow behavioral exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the work of the project, previous stages of software development and current and future educational and clinical applications of the Virtual Environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often argued that consumption of alcohol, tobacco and drugs is detrimental to the cognitive abilities of teenagers. In order to disentangle a possible causal effect of these substances use from a self-selection bias, we control for pupils previous performance and for their previous rate of progression applying a DiDiD strategy. Using the NELS 1988 panel dataset, we find that the effects of alcohol and tobacco on test scores disappear once the selection bias is controlled for (this does not preclude long term detrimental effects). However, we find reliable evidence that heavy use of drugs (marijuana and cocaine) has direct detrimental effects on educational achievements. Hence, our results may have significant policy implications.