993 resultados para temporal shift-invariance
Resumo:
From late 2008 onwards, in the space of six months, international financial regulatory networks centred around the Swiss city of Basel presided over a startlingly rapid ideational shift, the significance and importance of which remains to be deciphered. From being relatively unpopular and very much on the sidelines, the idea of macroprudential regulation (MPR) moved to the centre of the policy agenda and came to represent a new Basel consensus, as the principal interpretative frame, for financial technocrats and regulators seeking to diagnose and understand the financial crisis and to advance institutional blueprints for regulatory reform. This article sets out to explain how and why that ideational shift occurred. It identifies four scoping conditions of presence, position, promotion, and plausibility, that account for the successful rise to prominence of macroprudential ideas through an insiders' coup d'état. The final section of the article argues that this macroprudential shift is an example of a ‘gestalt flip’ or third order change in Peter Hall's terms, but it is not yet a paradigm shift, because the development of first order policy settings and second order policy instruments is still ongoing, giving the macroprudential ideational shift a highly contested and contingent character.
Resumo:
We investigated groundwater salinity as a key element in both the short and long-term evolution of the island of Grande Glorieuse. Firstly, we demonstrated that its evolution involved the integration of the whole range of variables forcing climate change. Piezometric surveys designed to sample the salinity of the subsoil waters of Grande Glorieuse could therefore provide an objective indicator of the environment’s evolution. Then, based on information from geoelectrical investigations, we proved that the spatial distribution of salinity is strongly dependent on the geological structure of the island. Structural heterogeneities can influence vulnerability of the island environment to salinization of the freshwater lens. Thus, characterization and monitoring of the freshwater lens will provide a reliable means of observing and managing anticipated climate changes on small islands. [Join J.-L., Banton O., Comte J.-C., Leze J., Massin F., Nicolini E. (2011), Assessing spatio-temporal patterns of groundwater salinity in small coral islands in the Western Indian Ocean, Western Indian Ocean Journal of Marine Science, 10(1), 1-12]
Resumo:
The ability to synchronise actions with environmental events is a fundamental skill supporting a variety of group activities. In such situations, multiple sensory cues are usually available for synchronisation, yet previous studies have suggested that auditory cues dominate those from other modalities. We examine the control of rhythmic action on the basis of auditory and haptic cues and show that performance is sensitive to both sources of information for synchronisation. Participants were required to tap the dominant hand index finger in synchrony with a metronome defined by periodic auditory tones, imposed movements of the non-dominant index finger, or both cues together. Synchronisation was least variable with the bimodal metronome as predicted by a maximum likelihood estimation (MLE) model. However, increases in timing variability of the auditory cue resulted in some departures from the MLE model. Our findings indicate the need for further investigation of the MLE account of the integration of multisensory signals in the temporal control of action.
Resumo:
Four- and five-year-olds completed two sets of tasks that involved reasoning about the temporal order in which events had occurred in the past or were to occur in the future. Four-year-olds succeeded on the tasks that involved reasoning about the order of past events but not those that involved reasoning about the order of future events, whereas 5-year-olds passed both types of tasks. Individual children who failed the past-event tasks were not particularly likely to fail the more difficult future-event tasks. However, children's performance on the reasoning tasks was predictive of their performance on a task assessing their comprehension of the terms “before” and “after.” Our results suggest that there may be a developmental change over this age range in the ability to flexibly represent and reason about the before-and-after relationships between events.
Resumo:
Connectance webs represent the standard data description in food web ecology, but their usefulness is often limited in understanding the patterns and processes within ecosystems. Increasingly, efforts have been made to incorporate additional, biologically meaningful, data into food web descriptions, including the construction of food webs using data describing the body size and abundance of each species. Here, data from a terrestrial forest floor food web, sampled seasonally over a 1-year period, were analysed to investigate (i) how stable the body size abundance and predator prey relationships of an ecosystem are through time and (ii) whether there are system-specific differences in body size abundance and predator prey relationships between ecosystem types.
Resumo:
Using density functional theory (DFT) and kinetic analyses, a new carboxyl mechanism for the water-gas-shift reaction (WGSR) on Au/CeO2(111) is proposed. Many elementary steps in the WGSR are studied using an Au cluster supported on CeO2(111). It is found that (i) water can readily dissociate at the interface between Au and CeO2; (ii) CO2 can be produced via two steps: adsorbed CO on the Au cluster reacts with active OH on ceria to form the carboxyl (COOH) species and then COOH reacts with OH to release CO2; and (iii) two adsorbed H atoms recombine to form molecular H-2 on the Au cluster. Our kinetic analyses show that the turnover frequency of the carboxyl mechanism is consistent with the experimental one while the rates of redox and formate mechanisms are much slower than that of carboxyl mechanism. It is suggested that the carboxyl pathway is likely to be responsible for WGSR on Au/CeO2.
Resumo:
We use images of high spatial and temporal resolution, obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, to reveal how the generation of transverse waves in Type I spicules is a direct result of longitudinal oscillations occurring in the photosphere. Here we show how pressure oscillations, with periodicities in the range of 130–440 s, manifest in small-scale photospheric magnetic bright points, and generate kink waves in the Sun’s outer atmosphere with transverse velocities approaching the local sound speed. Through comparison of our observations with advanced two-dimensional magnetohydrodynamic simulations, we provide evidence for how magnetoacoustic oscillations, generated at the solar surface, funnel upward along Type I spicule structures, before undergoing longitudinal-to-transverse mode conversion into waves at twice the initial driving frequency. The resulting kink modes are visible in chromospheric plasma, with periodicities of 65–220 s, and amplitudes often exceeding 400 km. A sausage mode oscillation also arises as a consequence of the photospheric driver, which is visible in both simulated and observational time series. We conclude that the mode conversion and period modi?cation is a direct consequence of the 90? phase shift encompassing opposite sides of the photospheric driver. The chromospheric energy ?ux of these waves are estimated to be ˜3 × 105 W m-2, which indicates that they are suf?ciently energetic to accelerate the solar wind and heat the localized corona to its multi-million degree temperatures.