998 resultados para syndrome calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is discussed for imposing any desired constraint on the force field obtained in a force constant refinement calculation. The application of this method to force constant refinement calculations for the methyl halide molecules is reported. All available data on the vibration frequencies, Coriolis interaction constants and centrifugal stretching constants of CH3X and CD3X molecules were used in the refinements, but despite this apparent abundance of data it was found that constraints were necessary in order to obtain a unique solution to the force field. The results of unconstrained calculations, and of three different constrained calculations, are reported in this paper. The constrained models reported are a Urey—Bradley force field, a modified valence force field, and a constraint based on orbital-following bond-hybridization arguments developed in the following paper. The results are discussed, and compared with previous results for these molecules. The third of the above models is found to reproduce the observed data better than either of the first two, and additional reasons are given for preferring this solution to the force field for the methyl halide molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Force constant and normal co-ordinate calculations are reported for the E species vibrations of the allene molecule. Data on the fundamental vibration frequencies of allene-h4, allene-d4 and allene-1.1-d2 and on the five experimentally determined Coriolis zeta constants of C3H4 and C3D4, were used in a force constant refinement procedure. Allowing for product and sum rules this gives 21 independent data which were used to refine to the most general harmonic force field (10 parameters) with one constraint (in the absence of any constraints the refinement was not satisfactory). The results have been used to calculate the complete ζz Coriolis interaction matrix for the allene-1.1-d2 molecule, and hence to calculate the expected rotational structure of the perpendicular bending vibrations of this molecule; the good agreement obtained with the observed spectra is a check on our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slantwise convective available potential energy (SCAPE) is a measure of the degree to which the atmosphere is unstable to conditional symmetric instability (CSI). It has, until now, been defined by parcel theory in which the atmosphere is assumed to be nonevolving and balanced, that is, two-dimensional. When applying this two-dimensional theory to three-dimensional evolving flows, these assumptions can be interpreted as an implicit assumption that a timescale separation exists between a relatively rapid timescale for slantwise ascent and a slower timescale for the development of the system. An approximate extension of parcel theory to three dimensions is derived and it is shown that calculations of SCAPE based on the assumption of relatively rapid slantwise ascent can be qualitatively in error. For a case study example of a developing extratropical cyclone, SCAPE calculated along trajectories determined without assuming the existence of the timescale separation show large SCAPE values for parcels ascending from the warm sector and along the warm front. These parcels ascend into the cloud head within which there is some evidence consistent with the release of CSI from observational and model cross sections. This region of high SCAPE was not found for calculations along the relatively rapidly ascending trajectories determined by assuming the existence of the timescale separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article illustrates that not all statistical software packages are correctly calculating a p-value for the classical F test comparison of two independent Normal variances. This is illustrated with a simple example, and the reasons why are discussed. Eight different software packages are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for "middle of the SARS-unique domain") in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1 ''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Chronic fatigue syndrome (CFS) is an increasing medical phenomenon of unknown aetiology leading to high levels of chronic morbidity. Of the many hypotheses that purport to explain this disease, immune system activation, as a central feature, has remained prominent but unsubstantiated. Supporting this, a number of important cytokines have previously been shown to be over-expressed in disease subjects. The diagnosis of CFS is highly problematic since no biological markers specific to this disease have been identified. The discovery of genes relating to this condition is an important goal in seeking to correctly categorize and understand this complex syndrome. OBJECTIVE: The aim of this study was to screen for changes in gene expression in the lymphocytes of CFS patients. METHODS: 'Differential Display' is a method for comparing mRNA populations for the induction or suppression of genes. In this technique, mRNA populations from control and test subjects can be 'displayed' by gel electrophoresis and screened for differing banding patterns. These differences are indicative of altered gene expression between samples, and the genes that correspond to these bands can be cloned and identified. Differential display has been used to compare expression levels between four control subjects and seven CFS patients. RESULTS: Twelve short expressed sequence tags have been identified that were over-expressed in lymphocytes from CFS patients. Two of these correspond to cathepsin C and MAIL1 - genes known to be upregulated in activated lymphocytes. The expression level of seven of the differentially displayed sequences have been verified by quantifying relative level of these transcripts using TAQman quantitative PCR. CONCLUSION: Taken as a whole, the identification of novel gene tags up-regulated in CFS patients adds weight to the idea that CFS is a disease characterized by subtle changes in the immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensions to the code MULTIMODE to obtain rovibrational wave functions and properties are described. An application of these new capabilities is made to a calculation of the Franck-Condon factors for photoionization of CF3 to CF3+. These calculations make use of a new, full-dimensional ab initio potential energy surface, which is also described here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The triatomic spin-rovibronic variational code RVIB3 has been extended to include the effect of two uncoupled electrons, for both (3)Sigma(-) and (3)Pi (Renner-Teller) electronic states. The spin-orbital-rotational kinetic energy is included in the usual way, via terms (J+L+S). The phenomenological terms AL.S and lambda 2/3(3S(z)(2)) are introduced to reproduce the 3 spin-orbit and spin-spin splittings, respectively. Calculations are performed to evaluate the spin-rovibronic energy levels of CCO (X) over tilde (3) Sigma(-) and CCO (A) over tilde (3) Pi for which the Born-Oppenheimer potentials are derived from high-accuracy ab initio calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of dipole-allowed absorption intensities in triatomic molecules is presented for systems with three close-lying electronic states of doublet multiplicity. Its derivation is within the framework of a recently developed variational method [CARTER, S., HANDY, N. C., PUZZARINI, C., TARRONI, R., and PALMIERI, P., 2000, Molec. Phys., 98,1967]. The method has been applied to the calculation of the infrared absorption spectrum of the C2H radical and its deuterated isotopomer for energies up to 10000 cm(-1) above the ground state, using highly accurate ab initio diabatic potential energy and dipole moment surfaces. The calculated spectra agree very well with those recorded experimentally in a neon matrix [FORNEY, D., JACOX, M. E., and THOMPSON, W. E., 1995, J. molee. Spectrosc., 170, 178] and assignments in the high energy region of the IR spectra are proposed for the first time.