996 resultados para suspended particulate matter (SPM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT OBJECTIVE To analyze the impact of air pollution on respiratory and cardiovascular morbidity of children and adults in the city of Vitoria, state of Espirito Santo. METHODS A study was carried out using time-series models via Poisson regression from hospitalization and pollutant data in Vitoria, ES, Southeastern Brazil, from 2001 to 2006. Fine particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) were tested as independent variables in simple and cumulative lags of up to five days. Temperature, humidity and variables indicating weekdays and city holidays were added as control variables in the models. RESULTS For each increment of 10 µg/m3 of the pollutants PM10, SO2, and O3, the percentage of relative risk (%RR) for hospitalizations due to total respiratory diseases increased 9.67 (95%CI 11.84-7.54), 6.98 (95%CI 9.98-4.17) and 1.93 (95%CI 2.95-0.93), respectively. We found %RR = 6.60 (95%CI 9.53-3.75), %RR = 5.19 (95%CI 9.01-1.5), and %RR = 3.68 (95%CI 5.07-2.31) for respiratory diseases in children under the age of five years for PM10, SO2, and O3, respectively. Cardiovascular diseases showed a significant relationship with O3, with %RR = 2.11 (95%CI 3.18-1.06). CONCLUSIONS Respiratory diseases presented a stronger and more consistent relationship with the pollutants researched in Vitoria. A better dose-response relationship was observed when using cumulative lags in polynomial distributed lag models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles. Implications: The approach of this study considers the measurement of surface deposited alveolar area of particles in the outdoor urban environment of Lisbon, Portugal. This type of measurements has not been done so far. Only particulate matter with aerodynamic diameters <2.5 (PM2.5) and >10 (PM10) mu m have been measured in outdoor environments and the levels found cannot be found responsible for all the observed health effects. Therefore, the exposure to nano- and ultrafine particles has not been assessed systematically, and several authors consider this as a real knowledge gap and claim for data such as these that will allow for deriving better and more comprehensive epidemiologic studies. Nanoparticle surface area monitor (NSAM) equipments are recent ones and their use has been limited to indoor atmospheres. However, as this study shows, NSAM is a very powerful tool for outdoor environments also. As most lung diseases are, in fact, related to deposition of the alveolar region of the lung, the metric used in this study is the ideal one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO Tratando-se a asma de uma doença respiratória, desde há várias décadas que tem sido abordada a hipótese de que factores ambientais, nomeadamente os relacionados com a qualidade do ar inalado, possam contribuir para o seu agravamento. Para além dos aeroalergenos, outros factores ambientais como a poluição atmosférica estarão associados às doenças respiratórias. O ar respirado contém uma variedade de poluentes atmosféricos, provenientes quer de fontes naturais quer de origem antropogénica, nomeadamente de actividades industriais, domésticas ou das emissões de veículos. Estes poluentes, tradicionalmente considerados como um problema de foro ambiental, têm sido cada vez mais encarados como um problema de saúde pública. Também a qualidade do ar interior, tem sido associada a queixas respiratórias, não só em termos ocupacionais mas também em exposições domésticas. Dentro dos principais poluentes, encontramos a matéria particulada (como as PM10), o O3, NO2, e os compostos orgânicos voláteis (COVs). Se é verdade que os três primeiros têm como principais fontes de exposição a combustão fóssil associada aos veículos automóveis, já os COVs (como o benzeno, tolueno, xileno, etilbenzeno e formaldeído) são poluentes mais característicos do ar interior. Os mecanismos fisiopatológicos subjacentes à agressão dos poluentes do ar não se encontram convenientemente esclarecidos. Pensa-se que após a sua inalação, induzam um grau crescente de stress oxidativo que será responsável pelo desenvolvimento da inflamação das vias aéreas. A progressão do stress oxidativo e da inflamação, associarse- ão posteriormente a lesão local (pulmonar) e sistémica. Neste trabalho pretendeu-se avaliar os efeitos da exposição individual a diversos poluentes, do ar exterior e interior, sobre as vias aéreas, recorrendo a parâmetros funcionais, inflamatórios e do estudo do stress oxidativo. Neste sentido, desenvolveu-se um estudo de painel na cidade de Viseu, em que foram acompanhadas durante 18 meses, 51 crianças com história de sibilância, identificadas pelo questionário do estudo ISAAC. As crianças foram avaliadas em quatro Visitas (quatro medidas repetidas), através de diversos exames, que incluíram execução de espirometria com broncodilatação, medição ambulatória do PEF, medição de FENO e estudo do pH no condensado brônquico do ar exalado. O estudo dos 8-isoprostanos no condensado brônquico foi efectuado somente em duas Visitas, e o do doseamento de malonaldeído urinário somente na última Visita. Para além da avaliação do grau de infestação de ácaros do pó do colchão, para cada criança foi calculado o valor de exposição individual a PM10, O3, NO2, benzeno, tolueno, xileno, etilbenzeno e formaldeído, através de uma complexa metodologia que envolveu técnicas de modelação associadas a medições directas do ar interior (na casa e escola da criança) e do ar exterior. Para a análise de dados foram utilizadas equações de estimação generalizadas com uma matriz de correlação de trabalho uniforme, com excepção do estudo das associações entre poluentes, 8-isoprostanos e malonaldeído. Verificou-se na análise multivariável a existência de uma associação entre o agravamento dos parâmetros espirométricos e a exposição aumentada a PM10, NO2, benzeno, tolueno e etilbenzeno. Foram também encontradas associações entre diminuição do pH do EBC e exposição crescente a PM10, NO2, benzeno e etilbenzeno e associações entre valores aumentados de FENO e exposição a etilbenzeno e tolueno. O benzeno, o tolueno e o etilbenzeno foram associados com maior recurso a broncodilatador nos 6 meses anteriores à Visita e o tolueno com deslocações ao serviço de urgência. Os resultados dos modelos de regressão que incluíram o efeito do poluente ajustado para o grau de infestação de ácaros do pó foram, de uma forma geral, idênticos ao da análise multivariável anterior, com excepção das associações para com o FENO. Nos modelos de exposição com dois poluentes, com o FEV1 como variável resposta, somente o benzeno persistiu com significado estatístico. No modelo com dois poluentes tendo o pH do EBC como variável resposta, somente persistiram as PM10. Os 8-isoprostanos correlacionaram-se com alguns COVs, designadamente etilbenzeno, xileno, tolueno e benzeno. Os valores de malonaldeído urinário não se correlacionaram com os valores de poluentes. Verificou-se no entanto que de uma forma geral, e em particular mais uma vez para os COVs, as crianças mais expostas a poluentes, apresentaram valores superiores de malonaldeído na urina. Verificou-se que os poluentes do ar em geral, e os COVs em particular, se associaram com uma deterioração das vias aéreas. A exposição crescente a poluentes associou-se não só com obstrução brônquica, mas também com FENO aumentado e maior acidez das vias aéreas. A exposição crescente a COVs correlacionou-se com um maior stress oxidativo das vias aéreas (medido pelos 8-isoprostanos). As crianças com exposição superior a COVs apresentaram maiores valores de malonaldeído urinário. Este trabalho sugere uma associação entre exposição a poluentes, inflamação das vias aéreas e stress oxidativo. Vem reforçar o interesse dos poluentes do ar, nomeadamente os associados a ambientes interiores, frequentemente esquecidos e que poderão ser explicativos do agravamento duma criança com sibilância.-----------ABSTRACT: Asthma is a chronic respiratory disease that could be influenced by environmental factors, as allergens and air pollutants. The air breathed contains a diversity of air pollutants, both from natural or anthropogenic sources. Atmospheric pollution, traditionally considered an environmental problem, is nowadays looked as an important public health problem. Indoor air pollutants are also related with respiratory diseases, not only in terms of occupational exposures but also in domestic activities. Particulate matter (such as PM10), O3, NO2 and volatile organic compounds (VOCs) are the main air pollutants. The main source for PM10, O3, NO2 exposure is traffic exhaust while for VOCs (such as benzene, toluene, xylene, ethylbenzene and phormaldehyde) the main sources for exposure are located in indoor environments. The pathophysiologic mechanisms underlying the aggression of air pollutants are not properly understood. It is thought that after inhalation, air pollutants could induce oxidative stress, which would be responsible for airways inflammation. The progression of oxidative stress and airways inflammation, would contribute for the local and systemic effects of the air pollutants. The present study aimed to evaluate the effects of individual exposure to various pollutants over the airways, through lung function tests, inflammatory and oxidative stress biomarkers. In this sense, we developed a panel study in the city of Viseu, that included 51 children with a history of wheezing. Those children that were identified by the ISAAC questionnaire, were followed for 18 months. Children were assessed four times (four repeated measures) through the following tests: spirometry with bronchodilation test, PEF study, FENO evaluation and exhaled breath condensate pH measurement. 8-isoprostane in the exhaled breath condensate were also measured but only in two visits. Urinary malonaldehyde measurement was performed only in the last visit. Besides the assessment of the house dust mite infestation, we calculated for each child the value of individual exposure to a wide range of pollutants: PM10, O3, NO2, benzene, toluene, xylene, ethyl benzene and formaldehyde. This strategy used a complex methodology that included air pollution modelling techniques and direct measurements indoors (homes and schools) and outdoors. Generalized estimating equations with an exchangeable working correlation matrix were used for the analysis of the data. Exceptions were for the study of associations between air pollutants, malonaldehyde and 8-isoprostanes. In the multivariate analysis we found an association between worsening of spirometric outcomes and increased exposure to PM10, NO2, benzene, toluene and ethylbenzene. In the multivariate analysis we found also negative associations between EBC pH and exposure to PM10, NO2, benzene, ethylbenzene and positive associations between FENO and exposure to ethylbenzene and toluene. Benzene, toluene and ethylbenzene were associated with increased use of bronchodilator in the 6 months prior to the visit and toluene with emergency department visits. Results of the regression models that included also the effect of the pollutant adjusted for the degree of infestation to house dust mites, were identical to the previous models. Exceptions were for FENO associations. In the two-pollutant models, with the FEV1 as dependent variable, only benzene persisted with statistical significance. In the two pollutant model with pH of EBC as dependent variable, only PM10 persisted. 8-isoprostanes were well correlated with some VOCs, namely with ethylbenzene, xylene, toluene and benzene. Urinary malonaldehyde did not present any correlation with air pollutants exposure. However, those children more exposed to air pollutants (namely to VOCs), presented higher values of malonaldehyde. It was found that air pollutants in general, and namely VOCs, were associated with deterioration of the airways. The increased exposure to air pollutants was associated not only with airways obstruction, but also with increased FENO and higher acidity of the airways. The increased exposure to VOCs was correlated with increased airways oxidative stress (measured by 8-isoprostane). Children with higher levels of exposure to VOCs had higher values of urinary malonaldehyde. This study suggests a relation between air pollution, airways inflammation and oxidative stress. It suggests also that attention should be dedicated to air quality as air pollutants could cause airways deterioration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Indoor air quality (IAQ) is considered an important determinant of human health. The association between exposure to volatile organic compounds, particulate matter, house dust mite, molds and bacteria in day care centers (DCC) is not completely clear. The aim of this project was to study these effects. Methods --- study design: This study comprised two phases. Phase I included an evaluation of 45 DCCs (25 from Lisbon and 20 from Oporto, targeting 5161 children). In this phase, building characteristics, indoor CO2 and air temperature/relative humidity, were assessed. A children’s respiratory health questionnaire derived from the ISAAC (International Study on Asthma and Allergies in Children) was also distributed. Phase II encompassed two evaluations and included 20 DCCs selected from phase I after a cluster analysis (11 from Lisbon and 9 from Oporto, targeting 2287 children). In this phase, data on ventilation, IAQ, thermal comfort parameters, respiratory and allergic health, airway inflammation biomarkers, respiratory virus infection patterns and parental and child stress were collected. Results: In Phase I, building characteristics, occupant behavior and ventilation surrogates were collected from all DCCs. The response rate of the questionnaire was 61.7% (3186 children). Phase II included 1221 children. Association results between DCC characteristics, IAQ and health outcomes will be provided in order to support recommendations on IAQ and children’s health. A building ventilation model will also be developed. Discussion: This paper outlines methods that might be implemented by other investigators conducting studies on the association between respiratory health and indoor air quality at DCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: O girassol é uma importante cultura na região de Parecis, no Cerrado brasileiro. Em 2014, a região respondeu pela produção de 232.700 t de grãos, 45% da produção nacional. A produção de girassol provém principalmente de um sistema que tem a soja como cultura principal. A associação entre soja e girassol pode reduzir impactos ambientais devido ao uso compartilhado de recursos. Este estudo desenvolveu uma Avaliação de Ciclo de Vida (ACV) ?do berço ao túmulo? do sistema de produção soja-girassol usado na região de Parecis e comparou seu perfil ambiental ao das monoculturas de soja e girassol. Impactos relacionados ao uso do solo (emissões da mudança de uso da terra e calagem) por cada cultura foram alocados em função do tempo de ocupação do solo. O sistema soja-girassol teve impactos ambientais menores em todas as categorias de impacto quando comparado à monocultura de soja e girassol, com o mesmo rendimento. Reduções importantes foram observadas em ?Mudança do Clima?, ?Acidificação Terrestre? e ?Formação de Material Particulado?. ABSTRACT: Sunflower is an important crop in Parecis region of the Brazilian Cerrado. In 2014 the region accounted for the production of 232,700 tons of sunflower grain, 45% of national production. Sunflower production comes mostly from a system that has soybean as the main crop. The association of soybean and sunflower can reduce environmental impacts due to shared use of resources. This study performed a ?cradle to gate? Life Cycle Assessment (LCA) of the soybean-sunflower production system used in Parecis region and compared its environmental profile to that of the monoculture of these two crops. Impacts related to the use of soil (land use change emissions and liming) by each crop were evaluated according to time of soil occupation criterion. Soybean-sunflower system had lower environmental impacts on every impact category comparing to soybean and sunflower monoculture with the same yield. Important reduction were observed on ?Climate change?, ?Terrestrial acidification? and ?Particulate matter formation? categories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributing to the health problems, such as cardiovascular and respiratory diseases, cancer, and physical injuries. This thesis presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Hai Phong City, Vietnam. The focus is on the integration of modelling and GIS approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-references data. A simplified health risk assessment was also done for Ha Noi based on monitoring data that allows a comparison of the results between the two cases. The results of the case studies show that health risk assessment based on modelling data can provide a much more detail results and allows assessing health impacts of different mobility development options at micro level. The use of modeling and GIS as a common platform for the integration of different assessments (environmental, health, socio-economic, etc.) provides various strengths, especially in capitalising on the available data stored in different units and forms and allows handling large amount of data. The use of models and GIS in a health risk assessment, from a decision making point of view, can reduce the processing/waiting time while providing a view at different scales: from micro scale (sections of a city) to a macro scale. It also helps visualising the links between air quality and health outcomes which is useful discussing different development options. However, a number of improvements can be made to further advance the integration. An improved integration programme of the data will facilitate the application of integrated models in policy-making. Data on mobility survey, environmental monitoring and measuring must be standardised and legalised. Various traffic models, together with emission and dispersion models, should be tested and more attention should be given to their uncertainty and sensitivity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle Pollution (PM) is a major problem in urban environments. There is serious health risks associated with exposure to PM. In addition, particulate matter also contributes to greenhouse effects and global warming. PM originates mainly from fuel combustion. In this paper, we attempt to study household energy use contributions to experienced levels of PM concentrations. We find that there is a strong positive association between household gasoline consumption and urban air pollution. Residential natural gas use is also associated with poor air quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa Doutoral em Engenharia Mecânica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction : The redox properties of fine/ultrafine particles as well as nanoparticles (NP) are suggested to be important to explain their biological activity and could constitute a novel and promising metric for hazard evaluation. The acellular in vitro dithiothreitol (DTT) assay allows measuring this property. Objectives : (1) to evaluate sampling requirements for fine/ultrafine particle allowing measurement of their oxidative potential (2) to apply the methodology to occupational situations where particle from combustion sources are generated. Material and method : Sampling parameters (type of filters and loaded amount) and storage duration affecting the DTT measurements were evaluated. Based on these results, a methodological approach was defined and applied in two occupational situations where diesel and other combustion particles are present (toll station in a tunnel and mechanical yard for bus reparation). Results : Teflon filters loaded with diesel particles were found more suitable for the DTT assay, due to their better chemical inertness compared to quartz filters: after storage durations larger than 150 hours, an increased reactivity toward DTT was observed only with quartz filters. Reactivity was linearly correlated to the loaded mass until about 1000 μg/filter. Different redox reactivities were determined in both working places, with the mechanical yard presenting a higher DTT consumption rate. Discussion and conclusions : These results demonstrate the feasibility of this method to determine the oxidative potential of fine/ultrafine particles in occupational situations. We propose to include this approach for hazard assessment of work places with exposure to manufactured and other NP.