986 resultados para surface structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We treat naturally pigmented karakul wool with a surface modification system of chlorination and catalytic bleaching, then examine its structure and properties. SEM photos reveal the surface morphology of karakul wool, and the Allworden reaction shows the extent of damage to the epicuticle. The results show that the surface modification removes the bulk of the fiber scales and bleaching increases fiber whiteness. After bleaching, the felting propensity of karakul wool improves slightly and its dye uptake decreases. For modified and bleached karakul wool, the felting propensity decreases, the dyeing rate increases, and equilibrium exhaustion decreases compared with untreated karakul wool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prismatic boron nitride nanorods have been grown on single crystal silicon substrates by mechanical ball-milling followed by annealing at 1300 °C. Growth takes place by rapid surface diffusion of BN molecules, and follows heterogeneous nucleation at catalytic particles of an Fe/Si alloy. Lattice imaging transmission electron microscopy studies reveal a central axial row of rather small truncated pyramidal nanovoids on each nanorod, surrounded by three basal planar BN domains which, with successive deposition of epitaxial layers adapt to the void geometry by crystallographic faceting. The bulk strain in the nanorods is taken up by the presence of what appear to be simple nanostacking faults in the external, near-surface domains which, like the nanovoids are regularly repetitive along the nanorod length. Growth terminates with a clear cuneiform tip for each nanorod. Lateral nanorod dimensions are essentially determined by the size of the catalytic particle, which remains as a foundation essentially responsible for base growth. Growth, structure, and dominating facets are shown to be consistent with a system which seeks lowest bulk and surface energies according to the well-known thermodynamics of the capillarity of solids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle behaviour is studied by the analysis of particle images taken with a high speed CCD digital video camera. The comparison of particle dynamics is performed for the fluidised beds without part, with single part and with multi-parts. The results show that there are significant differences in particle behaviours both in different beds and at different locations at part surfaces. The total and radiative heat transfer coefficients at different surfaces of a metallic component in a high temperature fluidised bed are measured by a heat transfer probe developed in the present work. The principle of the heat transfer probe is to measure the change in temperature of the heated metallic piece with time and, then, to extract the heat flux and heat transfer coefficients. The structure of the probe is optimized with numerical simulation of energy conservation for measuring the heat transfer coefficient of 150~600 W/m2 K. The relationship between the particle dynamics and the heat transfer is analysed to form the basis for future more rational designs of fluidised beds as well as for improved quality control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we propose a low cost synthetic sol-gel route that allows to produce high quality oxide nanostructures with inverse opal architecture which, transferred on alumina substrates provided with Pt interdigitated contacts and heater, are tested as gas sensing devices. An opal template of sintered monodisperse polystyrene spheres was filled with alcoholic solutions of metal oxide precursors and transferred on the alumina substrate. The polystyrene template was removed by thermal treatment, leading to the simultaneous sintering of the oxide nanoparticles. Beside SnO2, a binary oxide well known for gas sensing application, a Zn containing ternary solid solution (SnO2:Zn, with Zn 10% molar content) was taken into account for sensor preparation. The obtained high quality macro and meso-porous structures, characterized by different techniques, were tested for pollutant (CO, NO2) and interfering (methanol) gases, showing that very good detection can be reached through the increase of surface area offered by the inverse opal structure and the tailoring of the chemical composition. The electrical characterization performed on the tin dioxide based sensors shows an enhancement of the relative response towards NO2 at low temperatures in comparison with conventional SnO2 sensors obtained with sputtering technique. The addition of Zn increases the separation between the operating temperatures for reducing and oxidizing gases and results in a further enhancement of the selectivity to NO2 detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on developing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibrelike structures through adjustment of the temperature in the alkali treatment. The in vitro bioactivity of these structures was then evaluated by soaking in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite inducing ability. The Ti surface with a nanofiber-like structure showed better apatite inducing ability, than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofiberlike structure after 1 week soaking in SBF. It is expected that the anofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A POSS-PMMA copolymer has been synthesised by conventional free-radical polymerisation reaction. Uniform electrospun fibres from this copolymer showed a water contact angle as high as 1651 with a sliding angle as low as 61. For the first time, we found that the electrospun fibres had a bundled nanofibril secondary structure with an ordered POSS morphology on the fibre surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate correlations between the molecular changes and postcuring reaction on the surface of a diglycidyl ether of bisphenol A and diglycidylether of bisphenol F based epoxy resin cured with two different amine-based hardeners. The aim of this work was to present a proof of concept that ToF-SIMS has the ability to provide information regarding the reaction steps, path, and mechanism for organic reactions in general and for epoxy resin curing and postcuring reactions in particular. Contact-angle measurements were taken for the cured and postcured epoxy resins to correlate changes in the surface energy with the molecular structure of the surface. Principal components analysis (PCA) of the ToFSIMS positive spectra explained the variance in the molecular information, which was related to the resin curing and postcuring reactions with different hardeners and to the surface energy values. The first principal component captured information related to the chemical phenomena of the curing reaction path, branching, and network density based on changes in the relative ion density of the aliphatic hydrocarbon and the C7H7O+ positive ions. The second principal component captured information related to the difference in the surface energy, which was correlated to the difference in the relative intensity of the CxHyNz+ ions of the samples. PCA of the negative spectra provided insight into the extent of consumption of the hardener molecules in the curing and postcuring reactions of both systems based on the relative ion intensity of the nitrogen-containing negative ions and showed molecular correlations with the sample surface energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and transport of N-propyl-N-methylpyrrolidinium tetrafluoroborate (P13BF4) has been investigated over a wide temperature range in consequence to exhibiting properties suitable for potential solid-state superionic electrolyte applications. Prior to melting, the organic salt, P13BF4, transforms into a plastic crystal phase. Intrinsic conductivity in this solid, phase I (45–65 °C), is comparable to that in the melt (~10−3 S cm−1). Ionic motion and transport properties were investigated by 1H and 11B nuclear magnetic resonance (NMR) spectroscopy. Pressure-induced plastic flow in this system may accommodate volume changes in device application and to this extent, X-ray diffraction (XRD) has been used. Scanning electron microscopy (SEM) revealed complex surface morphology and lattice imperfections associated with the strong orientational disorder of the plastic state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of polymer electrolytes, especially those based on polyether–lithium salt systems. In some cases, conductivity increases of more than one order of magnitude have been reported in crystalline PEO-based complexes. In this work, we report on the effects of TiO2 on a completely amorphous polyether-based system to remove the complication of multiple phases presented by the semi-crystalline nature of PEO. Multinuclear magnetic resonance spectroscopy has shown that the lithium ion environment is changed by the addition of filler. Vibrational spectroscopy shows that the filler influences the disordered-longitudinal acoustic modes (DLAM) in the case of an amorphous polyether and suggests an interaction between the filler surface and the polymer. Positron annihilation lifetime spectroscopy indicates an increase in free volume upon addition of filler to an amorphous polyether–salt complex, coinciding with an apparent increase in polymer mobility as determined from 1H T2 NMR measurements. Impedance spectroscopy has shown clear evidence of an inter-phase region that may be more or less conductive than the bulk polymer electrolyte itself. The data support a model which includes conduction through an interfacial region in addition to the bulk polymer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The preparation of silica-coated ZnO nanocomposite using polyvinyl pyrrolidone (PVP) as a coupling agent was investigated. Transmission electron microscopy analysis revealed that silica has been deposited on the surface of PVP-capped ZnO nanoparticles as a continuous thin layer. Two-dimensional correlation analysis based on the time-dependent UV–vis spectra was introduced to study the interaction governing the deposition of silica on to PVP-capped ZnO. Strong hydrogen bonds formed between the amphiphilic PVP molecules and silica in the silicacoated PVP-capped ZnO composites. The reduced photocatalytic activity of silica-coated ZnO nanoparticles will enhance their performance as durable, safe, and nonreactive UV blockers in plastics, paints, and coating for outdoor textile and timber products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silk fibroin films are promising materials for a range of biomedical applications. To understand the effects of casting solvents on film properties, we used water (W), formic acid (FA), and trifluoroacetic acid (TFA) as solvents. We characterized molecular weight, secondary structure, mechanical properties, and degradation behavior of cast films. Significant degradation of fibroin was observed for TFA-based film compared to W and TA-based films when analyzed by SDS-PAGE. Fibroin degradation resulted in a significant reduction in tensile strength and modulus of TFA-based films. Compared to water, TFA-based films demonstrated lower water solubility (19.6% vs. 62.5% in 12 h) despite having only a marginal increase in their ß-sheet content (26.9% vs. 23.7%). On the other hand, FA-based films with 34.3% ß-sheet were virtually water insoluble. Following solubility treatment, ß-sheet content in FA-based films increased to 50.9%. On exposure to protease XIV, water-annealed FA-based films lost 74% mass in 22 days compared to only 30% mass loss by ethanol annealed FA films. This study demonstrated that a small variation in the ß-sheet percentage and random coil conformations resulted in a significant change in the rates of enzymatic degradation without alteration to their tensile properties. The film surface roughness changed with the extent of enzymatic hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vanadium nitride (VN) is currently one of the most promising materials for electrodes of supercapacitors. The structure and electrochemical properties of VN synthesized by temperature-programmed NH3 reduction of V2O5 are analyzed in this paper. Vanadium nitride produced via this route has distinctive structural characteristics. VN mimics the shape of the initial V2O5 precursor indicating a pronounced direct attachment of nitride grains. The particles have domains of grains with a preferential orientation (texture). The large volume of pores in VN is represented by the range of 15−110 nm. VN demonstrates capacitive properties in three different types of aqueous electrolytes, 1 M KOH, 1 M H2SO4, and 3 M NaCl. The material has an acceptable rate capability in all electrolytes, showing about 80% of its maximal capacitance at a current load of 1 A/g in galvanostatic charging/discharging experiments. The capacitance of 186 F/g is observed in 1 M KOH electrolyte at 1 A/g. The previously reported negative effect of material loading on the capacitance is significantly suppressed. The observed electrochemical characteristics related to the application of this material in supercapacitors can be correlated with the crystalline structure of the nitride and the composition of its surface layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here, for the first time, the surface-enhanced Raman scattering (SERS) spectra of resveratrol using KNO3-aggregated citrate-reduced silver (Ag) colloids. The technique provided a substantial spectral enhancement and therefore good quality spectra of resveratrol at parts per million (ppm) concentrations. The detection limit was found to be <1 μM, equivalent to <0.2 ppm. The SERS profile additionally closely resembled its normal solid-state Raman spectrum with some changes in relative intensity. These intensity changes, together with a precise band assignment aided by density functional theory calculations at the B3LYP/6–31G(d) level, allowed the determination of the structural orientation of the adsorbed resveratrol on the surface of the metal nanoparticles. In particular, the SERS spectra obtained at different resveratrol concentrations exhibited concentration-dependent features, suggesting an influence of surface coverage on the orientation of the adsorbed molecules. At a high concentration, an adoption of close-to-upright orientation of resveratrol adsorbed on the metal surface through the p-OH phenyl ring is favoured. The binding structure is, however, altered at lower surface coverage when the concentration decreases to a tilted orientation with the trans-olefin C=C bond aligning closer to parallel to the surface of the Ag nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disulfide bonds formed by the oxidation of cysteine residues in proteins are the major form of intra- and inter-molecular covalent linkages in the polypeptide chain. To better understand the conformational energetics of this linkage, we have used the MP2(full)/6-31G(d) method to generate a full potential energy surface (PES) for the torsion of the model compound diethyl disulfide (DEDS) around its three critical dihedral angles (χ2, χ3, χ2′). The use of ten degree increments for each of the parameters resulted in a continuous, fine-grained surface. This allowed us to accurately predict the relative stabilities of disulfide bonds in high resolution structures from the Protein Data Bank. The MP2(full) surface showed significant qualitative differences from the PES calculated using the Amber force field. In particular, a different ordering was seen for the relative energies of the local minima. Thus, Amber energies are not reliable for comparison of the relative stabilities of disulfide bonds. Surprisingly, the surface did not show a minimum associated with χ2 − 60°, χ390, χ2′ − 60°. This is due to steric interference between Hα atoms. Despite this, significant populations of disulfides were found to adopt this conformation. In most cases this conformation is associated with an unusual secondary structure motif, the cross-strand disulfide. The relative instability of cross-strand disulfides is of great interest, as they have the potential to act as functional switches in redox processes.