959 resultados para strip mill
Resumo:
The aim of this thesis was to produce information for the estimation of the flow balance of wood resin in mechanical pulping and to demonstrate the possibilities for improving the efficiency of deresination in practice. It was observed that chemical changes in wood resin take place only during peroxide bleaching, a significant amount of water dispersed wood resin is retained in the pulp mat during dewatering and the amount of wood resin in the solid phase of the process filtrates is very small. On the basis of this information there exist three parameters related to behaviour of wood resin that determine the flow balance in the process: 1. The liberation of wood resin to the pulp water phase 2. Theretention of water dispersed wood resin in dewatering 3. The proportion of wood resin degraded in the peroxide bleaching The effect of different factors on these parameters was evaluated with the help of laboratory studies and a literature survey. Also, information related to the values of these parameters in existing processes was obtained in mill measurements. With the help of this information, it was possible to evaluate the deresination efficiency and the effect of different factors on this efficiency in a pulping plant that produced low-freeness mechanical pulp. This evaluation showed that the wood resin content of mechanical pulp can be significantly decreased if there exists, in the process, a peroxide bleaching and subsequent washing stage. In the case of an optimal process configuration, as high as a 85 percent deresination efficiency seems to be possible with a water usage level of 8 m3/o.d.t.
Resumo:
The fiber recovery process is an essential part of the modern paper mill. It creates the basisfor mill's internal recirculation of the most important raw materials ¿ water and fiber. It is normally also a start point for further treatment of wastewater and if it works efficiently, it offers excellent basis to minimize effluents. This dissertation offers two different approaches to the subject. Firstly a novel save-all disc filter feeding system is developed and presented. This so-called precoat method is tested both in the laboratory and full-scale conditions. In laboratory scale it beats the traditional one clearly, when low freeness pulps are used as a sweetener stock. The full-scale application needs still some development work before it can be implemented to the paper mills. Secondly, the operationenvironment of save-all disc filter is studied mostly in laboratory conditions.The focus of this study is in cases, where low-freeness pulps are used as a sweetener stock of save-all filter. The effects of CSF-value, pressure drop, suspension consistency and retention chemicals to the quantity and quality of the filtrate was studied. Also the filtration resistance of the low freeness pulps was one studied.
Resumo:
In this thesis membrane filtration of paper machnie clear filtrate was studied. The aim of the study was to find membrane processes which are able to produce economically water of sufficient purity from paper machine white water or its saveall clarified fractions for reuse in the paper machnie short circulation. Factors affecting membrane fouling in this application were also studied. The thesis gives an overview af experiments done on a laboratory and a pilot scale with several different membranes and membrane modules. The results were judged by the obtained flux, the fouling tendency and the permeate quality assessed with various chemical analyses. It was shown that membrane modules which used a turbulence promotor of some kind gave the highest fluexes. However, the results showed that the greater the reduction in the concentration polarisation layer caused by increased turbulence in the module, the smaller the reductions in measured substances. Out of the micro-, ultra- and nanofiltration membranes tested, only nanofiltration memebranes produced permeate whose quality was very close to that of the chemically treated raw water used as fresh water in most paper mills today and which should thus be well suited for reuse as shower water both in the wire and press section. It was also shown that a one stage nanofiltration process was more effective than processes in which micro- or ultrafiltration was used as pretreatment for nanofiltration. It was generally observed that acidic pH, high organic matter content, the presence of multivalent ions, hydrophobic membrane material and high membrane cutoff increased the fouling tendency of the membranes.
Resumo:
The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.
Resumo:
In this thesis fouling of conventional filter fabrics and membranes was studied. In the beginning of the thesis fouling and how it can be measured and predicted is reviewed. Information on different methods on how fouling canbe decreased or cleaned away is also given. The experimental part is divided into two sections; fabric filtration and membrane filtration. Fouling of the filter fabrics was studied with silica or cupper slurries and fouling of the membranes was studied with pulp and paper mill waters. The fouled filter materials were characterised according to many different methods. The most useful way to observe fouling is to measure the changes in the permeate flux. Fouling can also be seen visually e.g. with scanning electron microscopy. Consequently, also the reason for the fouling in question might be found. Different filtration characteristics affect fouling e.g. as the filtration pressure was increased it did not have much influence on the permeate flux, but the pressure caused the membrane to get fouled faster. Also, an increase of shear rate on the membrane surface decreased fouling. Different pretreatment methods for the effluent were tested in membrane filtration to decrease fouling. The tested methods; biological treatment, ozonation, enzymatic treatment and flocculation, did not have a clear influence on the fouling of the membrane, but e.g. a biological treatment combined with ultrafiltration made the tested groundwood mill circulation water purer than ultrafiltration alone.
Resumo:
In this thesis the membrane filtration equipment for plate type ceramic membranes was developed based on filtration results achieved with different kinds of wastewaters. The experiments were mainly made with pulp and board mill wastewaters, but some experiments were also made with a bore well water and a stone cutting mine wastewater. The ceramicmembranes used were alpha-alumina membranes with a pore size of 100 nm. Some ofthe membranes were coated with a gamma-alumina layer to reduce the membrane pore size to 10 nm, and some of them were modified with different metal oxides in order to change the surface properties of the membranes. The effects of operationparameters, such as cross-flow velocity, filtration pressure and backflushing on filtration performance were studied. The measured parameters were the permeateflux, the quality of the permeate, as well as the fouling tendency of the membrane. A dynamic membrane or a cake layer forming on top of the membrane was observed to decrease the flux and increase separa-tion of certain substances, especially at low cross-flow velocities. When the cross-flow velocities were increased the membrane properties became more important. Backflushing could also be used to decrease the thickness of the cake layer and thus it improved the permeate flux. However, backflushing can lead to a reduction of retentions in cases where the cake layer is improving them. The wastewater quality was important for the thickness of the dynamic membrane and the membrane pore size influenced the permeate flux. In general, the optimization of operation conditions is very important for the successful operation of a membrane filtration system. The filtration equipment with a reasonable range of operational conditions is necessary, especiallywhen different kinds of wastewaters are treated. This should be taken into account already in the development stage of a filtration equipment.
Resumo:
Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.
Resumo:
O presente trabalho tee como objetivo estudar a emergência e o desenvolvimento de plantas de marmeleiro, com potencial para serem utilizadas como porta-enxertos. O trabalho foi desenvolvido no Centro APTA Frutas/IAC, de maio/05 a janeiro/06. Sementes dos marmeleiros 'Mendoza INTA-37', 'Provence', 'Portugal' e 'Japonês' foram extraídas de frutos maduros, lavadas em água corrente, secas à sombra por 48 h e estratificadas a frio por 20 dias. Em seguida, foram semeadas em bandejas de poliestireno (72 células, capacidade de 120 cm³/célula) contendo a vermiculita como substrato. Foi feito contagem da porcentagem de emergência após 30 dias da semeadura, a cada 10 dias, em um total de quatro coletas. Em seguida, foi retirada uma amostra de 10 plântulas por repetição e avaliados a altura média da parte aérea, nº de folhas, massa seca média da parte aérea e das raízes. Foram ainda separados 10 plântulas uniformes e representativos de cada repetição e transplantados para sacos plásticos (capacidade de 3 L) contendo como substrato solo + esterco de curral curtido + areia (1:1:1 v/v). As plântulas permaneceram em viveiro telado (sombrite 50%), sendo irrigadas periodicamente. A cada 30 dias, foram mensurados a altura e o diâmetro das plântulas até o final da sexta avaliação (após 180 dias do transplantio). Concluiu-se que o marmeleiro 'Japonês' apresenta maior porcentagem de emergência (70%), altura das plântulas (111,83 cm) e diâmetro (0,7 cm), possuindo maior performance e uma excelente alternativa como porta-enxerto para marmeleiros.
Resumo:
A Casparian strip-bearing endodermis is a feature that has been invariably present in the roots of ferns and angiosperms for approximately 400 million years. As the innermost cortical layer that surrounds the central vasculature of roots, the endodermis acts as a barrier to the free diffusion of solutes from the soil into the stele. Based on an enormous body of anatomical and physiological work, the protective endodermal diffusion barrier is thought to be of major importance for many aspects of root biology, reaching from efficient water and nutrient transport to defense against soil-borne pathogens. Until recently, however, we were ignorant about the genes and mechanisms that drive the differentiation of this intricately structured barrier. Recent work in Arabidopsis has now identified the first major players in Casparian strip formation. A mechanistic understanding of endodermal differentiation will finally allow us to specifically interfere with endodermal barrier function and study the effects on plant growth and survival under various stress conditions. Here, I critically review the major findings and models related to endodermal structure and function from other plant species and assess them in light of recent molecular data from Arabidopsis, pointing out where the older, descriptive work can provide a framework and inspiration for further molecular dissection.
Resumo:
Os marmeleiros sempre foram propagados comercialmente através de enraizamento de estacas. Devido à falta de vigor das mudas, principalmente nos primeiros anos após o plantio, uma série de trabalhos foram desenvolvidos no Brasil a fim de viabilizar a utilização do marmeleiro 'Japonês' (Chaenomeles sinensis Koehne) como porta-enxerto para marmelos. Os resultados foram satisfatórios, mas frente à falta de informações sobre o melhor método de enxertia, desenvolveu-se este experimento com o objetivo de verificar o desenvolvimento de cultivares de marmeleiros enxertados sobre esse porta-enxerto por dois métodos de enxertia. Os marmeleiros 'Provence', 'Mendoza Inta-37', 'Portugal', 'Smyrna' e 'Japonês' foram enxertados através de garfagem em mudas de 'Japonês', pelos métodos fenda cheia e inglês complicado. Foram utilizados garfos com três gemas, coletadas de plantas- matrizes do Instituto Agronômico (IAC). As plantas foram mantidas em viveiro, sendo avaliadas após 60 dias a porcentagem de garfos brotados. O comprimento e o diâmetro médio do enxerto foram avaliados aos 60; 90; 120 e 150 dias após a realização da enxertia. Concluiu-se que os marmeleiros 'Japonês' e 'Provence' devem ser enxertados pelo método de garfagem através de fenda cheia, os marmeleiros 'Smyrna' e 'Mendoza Inta-37' através de inglês complicado, e 'Portugal' independe do método.
Resumo:
Os marmeleiros sempre foram propagados comercialmente através de enraizamento de estacas. Devido à falta de vigor das mudas, principalmente nos primeiros anos após o plantio, uma série de trabalhos foram desenvolvidos no Brasil a fim de viabilizar a utilização do marmeleiro 'Japonês' (Chaenomeles sinensis Koehne) como porta-enxerto para marmelos. Frente à falta de informações, desenvolveu-se este experimento com o objetivo de verificar o desenvolvimento de diferentes cultivares de marmeleiros enxertadas sobre esse porta-enxerto. Os marmeleiros 'Japonês', 'MC', 'Adams', 'Van Deman', 'Provence', 'Cheldow', 'Smyrna', 'Rea's Mamouth', 'De Patras', 'De Vranja', 'Lajeado', 'Champion', 'Mendoza Inta-37', 'Alongado', 'Meech Prolific', 'Bereckzy', 'Alaranjado', 'Kiakami', 'Du Lot', 'Radaelli', 'CTS 207', 'D'Angers', 'Zuquerinetta', 'BA 29', 'Constantinopla', 'Marmelo Pêra', 'Apple', 'Portugal', 'Füller', 'Meliforme' e 'Pineapple' foram enxertados através de garfagem em mudas de 'Japonês', pelo método em fenda cheia. Foram utilizados garfos com três gemas, coletados de plantas-matrizes. As mudas foram mantidas em viveiro, sendo avaliadas, após 60 dias, a porcentagem de garfos brotados. O comprimento e diâmetro médio do enxerto foram avaliados aos 60; 90; 120 e 150 dias após a realização da enxertia. Concluiu-se que os marmeleiros apresentaram boa afinidade com o porta-enxerto 'Japonês'. As cultivares 'Van Deman', 'Japonês', 'Smyrna', 'De Vranja', 'Lajeado', 'Mendoza Inta-37', 'Alongado', 'Meech Prolific', 'Meliforme', 'Cheldow', 'Champion', 'Bereckzy' e 'De Patras' foram as que tiveram o maior vigor na fase de viveiro.
Resumo:
In the specific case of the quince trees, there is lack of information about the emergency of their seedlings, development and time of production of rootstocks to reach the point of the grafting, as well as development of the grafts. Therefore, the objective of the present research was to study the Cydonia and Chaenomeles genera, as well as the development of the grafts during the nursery phase. Seeds of the quince tree cultivars 'Mendoza Inta-37', 'Provence', ' Portugal' and 'Japonês' were obtained from ripe fruits and submitted to cold stratification during 20 days. Soon after, the seeds were sowed in 72-cell polystyrene trays (120 cm³ of capacity/cell) containing vermiculite as substrate. After 60 days, the seedlings were put in plastic bags (3 liters of capacity) filled with a substrate containing soil: sand: manure (1:1:1 v/v). The seedlings were kept in a 50% of shadow nursery and periodically irrigated. After 180 days, the seedlings were grafted by the cleft grafting method, during the winter, using scion sticks from quince 'Portugal'. After 60 days, the percentage of alive and sprouted grafts was evaluated. The length and diameter of the grafts were measured every 30 days, a total of four times. The quince 'Japonês' showed the best performance among all the rootstocks in this experiment, being an excellent alternative as rootstock for quince trees. 'Japonês' and 'Mendoza Inta-37' were also the rootstocks that promoted the best development of the grafts.
Resumo:
A propagação da atemóia deve ser feita assexuadamente e, nesse contexto, a estaquia surge como alternativa. Dessa forma, objetivou-se determinar a parte do ramo de atemoieira (Annona cherimola Mill. x Annona squamosa L.) cv. 'Gefner' mais apropriada para estaquia. O delineamento experimental foi o inteiramente casualizado, em esquema fatorial 3x3 (reguladores x tipos de estaca), com 5 repetições de 12 estacas. Os reguladores utilizados foram AIB 0,5% e ANA 0,5%, aplicados na forma de talco na base das estacas, além da testemunha. Os diferentes tipos de estacas foram retirados de 3 regiões do caule (apical, mediana e basal). As estacas tratadas foram colocadas para enraizar em bandejas de poliestireno contendo substrato comercial Plantmax® e levadas para câmara de nebulização intermitente, onde permaneceram durante 136 dias. As variáveis avaliadas foram: porcentagem de estacas vivas, porcentagem de estacas vivas com enraizamento, porcentagem de estacas enraizadas com folhas remanescentes, com brotações e com folhas remanescentes + brotações, porcentagem de estacas enraizadas sem folhas, número, comprimento médio e massa da matéria seca de raízes por estaca enraizada, área foliar e massa da matéria seca de folhas remanescentes e brotações. A atemoieira apresenta maior potencial para formação de mudas por estaquia empregando-se estacas apicais sem tratamento e medianas tratadas com ANA (0,5%).
Resumo:
O objetivo do trabalho foi avaliar a influência da época no pegamento da enxertia em abacateiro das variedades Hass e Fortuna, mensalmente, no período de doze meses. As plantas utilizadas pertencem ao Banco de Germoplasma do Departamento de Produção Vegetal da Faculdade de Ciências Agrárias e Veterinárias - UNESP, Câmpus de Jaboticabal-SP. O delineamento experimental utilizado foi o inteiramente casualizado, em esquema fatorial 2 x 12 ('Hass' e 'Fortuna' e os períodos de enxertia), no intervalo de março de 2005 a fevereiro de 2006, com 10 unidades por parcela, repetidas por quatro vezes. O método utilizado foi a enxertia por garfagem de topo em fenda cheia. As avaliações, 90 dias após a instalação do experimento, foram quanto à porcentagem de pegamento, desenvolvimento total das combinações (porta-enxerto/ enxerto), número de brotações do enxerto, diâmetros acima, abaixo e no local de união do enxerto. O período mais indicado para o sucesso da enxertia está compreendido entre os meses de novembro e dezembro para ambas as variedades de abacateiro.
Resumo:
This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.