972 resultados para stiffness tensor
Resumo:
Objective: To compare effects of a non-renin-angiotensin system (RAS) blocker, using a CCB, or a RAS blocker, using an ARB regimen on the arterial stiffness reduction in postmenopausal hypertensive women. Methods: In this prospective study, a total of 125 hypertensive women (age: 61.4_6 yrs; 98% Caucasian; BW: 71.9_14 kg; BMI: 27.3_5 kg/m2; SBP/ DBP: 158_11/92_9 mmHg) were randomized between ARB (valsartan 320mg_HCTZ) and CCB (amlodipine 10mg _ HCTZ). The primary outcome was carotid-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Results: There were no significant differences in baseline demographic data between the two groups. Both treatments effectively lowered BP at the end of the study with similar (p>0.05) reductions in the valsartan (_22.9/_10.9 mmHg) and amlodipine based (_25.2/_11.7 mmHg) treatment groups. Despite a lower (p<0.05 for DBP) central SBP/DBP in the CCB group (_19.2/_10.3 mmHg) compared to the valsartan group (_15.7/_7.6 mmHg) at week 38, a similar reduction in carotid-femoral PWV (_1.7 vs _1.9 m/sec; p>0.05) was observed between both groups. The numerically larger BP reduction observed in the CCB group was associated with a much higher incidence of peripheral edema (77% vs 14%) than the valsartan group. Conclusion: In summary, BP lowering in postmenopausal women led to a reduction in arterial stiffness assessed by PWV measurement. Both regimens reduced PWV at 38 weeks of treatment to a similar degree, despite differences in BP lowering suggesting that the effect of RAS blockade to influence PWV may partly be independent of BP.
Resumo:
Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis.
Resumo:
Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed in order to place the portable concrete barrier system. The focus of this research study was to develop a proper stiffness transition between W-beam guardrail and portable concrete barrier systems. This research effort was accomplished through development and refinement of design concepts using computer simulation with LS-DYNA. Several design concepts were simulated, and design metrics were used to evaluate and refine each concept. These concepts were then analyzed and ranked based on feasibility, likelihood of success, and ease of installation. The rankings were presented to the Technical Advisory Committee (TAC) for selection of a preferred design alternative. Next, a Critical Impact Point (CIP) study was conducted, while additional analyses were performed to determine the critical attachment location and a reduced installation length for the portable concrete barriers. Finally, an additional simulation effort was conducted in order to evaluate the safety performance of the transition system under reverse-direction impact scenarios as well as to select the CIP. Recommendations were also provided for conducting a Phase II study and evaluating the nested Midwest Guardrail System (MGS) configuration using three Test Level 3 (TL-3) full-scale crash tests according to the criteria provided in the Manual for Assessing Safety Hardware, as published by the American Association of Safety Highway and Transportation Officials (AASHTO).
Resumo:
To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.
Resumo:
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.
Resumo:
This study compared the outcome of total knee replacement (TKR) in adult patients with fixed- and mobile-bearing prostheses during the first post-operative year and at five years' follow-up, using gait parameters as a new objective measure. This double-blind randomised controlled clinical trial included 55 patients with mobile-bearing (n = 26) and fixed-bearing (n = 29) prostheses of the same design, evaluated pre-operatively and post-operatively at six weeks, three months, six months, one year and five years. Each participant undertook two walking trials of 30 m and completed the EuroQol questionnaire, Western Ontario and McMaster Universities osteoarthritis index, Knee Society score, and visual analogue scales for pain and stiffness. Gait analysis was performed using five miniature angular rate sensors mounted on the trunk (sacrum), each thigh and calf. The study population was divided into two groups according to age (≤ 70 years versus > 70 years). Improvements in most gait parameters at five years' follow-up were greater for fixed-bearing TKRs in older patients (> 70 years), and greater for mobile-bearing TKRs in younger patients (≤ 70 years). These findings should be confirmed by an extended age controlled study, as the ideal choice of prosthesis might depend on the age of the patient at the time of surgery.
Resumo:
Questionnaires were sent to transportation agencies in all 50 states in the U.S., to Puerto Rico, and all provinces in Canada asking about their experiences with uplift problems of - corrugated metal pipe (CMP). Responses were received from 52 agencies who reported 9 failures within the last 5 years. Some agencies also provided design standards for tiedowns to resist uplift. There was a wide variety in restraining forces used; for example for a pipe 6 feet in diameter, the resisting force ranged from 10 kips to 66 kips. These responses verified the earlier conclusion based on responses from Iowa county engineers that a potential uplift danger exists.when end restraint is not provided for CMP and that existing designs have an unclear theoretical or experimental basis. In an effort to develop more rational design standards, the longitudinal stiffness of three CMP ranging from 4 to 8 feet in diameter were measured in the laboratory. Because only three tests were conducted, a theoretical model to evaluate the stiffness of pipes of a variety of gages and corrugation geometries was also developed. The experimental results indicated a "stiffness" EI in the range of 9.11 x 10^5 k-in^2 to 34.43 x 10^5 k-in^2 for the three pipes with the larger diameter pipes having greater stiffness. The theoretical model developed conservatively estimates these stiffnesses.
Resumo:
This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
Seasonal variations in ground temperature and moisture content influence the load carrying capacity of pavement subgrade layers. To improve pavement performance, pavement design guidelines require knowledge of environmental factors and subgrade stiffness relationships. As part of this study, in-ground instrumentation was installed in the pavement foundation layers of a newly constructed section along US Highway 20 near Fort Dodge, Iowa, to monitor the seasonal variations in temperature, frost depth, groundwater levels, and moisture regime. Dynamic cone penetrometer (DCP), nuclear gauge, and Clegg hammer tests were performed at 64 test points in a 6-ft x 6-ft grid pattern to characterize the subgrade stiffness properties (i.e., resilient modulus) prior to paving. The purpose of this paper is to present the field instrumentation results and the observed changes in soil properties due to seasonal environmental effects.
Resumo:
Problems with unknown bridge foundations in Iowa are often associated with timber substructures. Timber piles are subject to biological and physical deterioration, which makes quantifying in-service pile capacity difficult. Currently there are no reliable means to estimate the residual carrying capacity of an in-service deteriorated pile; and thus, the overall safety of the bridge cannot be determined. The lack of reliable evaluation methods can lead to conservative and costly maintenance practices. This research study was undertaken to investigate procedures for assessing bridge substructures, and evaluating procedures for rehabilitating/strengthening/replacing inadequate substructure components. The report includes an extensive literature review, a field reconnaissance study of 49 bridges, a survey of substructure problems from the perspective of County Engineers, a laboratory study aiming to correlate nondestructive tests to residual pile strength and stiffness values, nondestructive and destructive load tests for 6 bridges with poor substructures, and finally a laboratory study evaluating selected repair methods.
Resumo:
This report describes a study to evaluate Geopier® soil reinforcement technology in transportation construction. Three projects requiring settlement control were chosen for evaluation—an embankment foundation, a box culvert, and a bridge approach fill. For each project, construction observations, in situ soil testing, laboratory material characterization, and performance monitoring were carried out. For the embankment foundation project, Geopier elements were installed within and around an abutment footprint for the new I-35 overpass at the US Highway 5/Interstate 35 interchange in Des Moines, Iowa. Although the main focus of this investigation was to evaluate embankment foundation reinforcement using Geopier elements, a stone column reinforced soil provided an opportunity to compare systems. In situ testing included cone penetration tests (CPTs), pressuremeter tests (PMTs), Ko stepped blade tests, and borehole shear tests (BSTs), as well as laboratory material testing. Comparative stiffness and densities of Geopier elements and stone columns were evaluated based on full-scale modulus load tests and standard penetration tests. Vibrating wire settlement cells and total stress cells were installed to monitor settlement and stress concentration on the reinforcing elements and matrix soil. Settlement plates were also monitored by conventional optical survey methods. Results show that the Geopier system and the stone columns performed their intended functions. The second project involved settlement monitoring of a 4.2 m wide x 3.6 m high x 50 m long box culvert constructed beneath a bridge on Iowa Highway 191 south of Neola, Iowa. Geopier elements were installed to reduce total and differential settlement while ensuring the stability of the existing bridge pier foundations. Benefits of the box culvert and embankment fill included (1) ease of future roadway expansion and (2) continual service of the roadway throughout construction. Site investigations consisted of in situ testing including CPTs, PMTs, BSTs, and dilatometer tests. Consolidated drained triaxial compression tests, unconsolidated undrained triaxial compression test, oedometer tests, and Atterberg limit tests were conducted to define strength and consolidation parameters and soil index properties for classification. Vibrating wire settlement cells, total stress cells, and piezometers were installed for continuous monitoring during and after box culvert construction and fill placement. This project was successful at controlling settlement of the box culvert and preventing downdrag of the bridge foundations, but could have been enhanced by reducing the length of Geopier elements at the ends of the box culvert. This would have increased localized settlement while reducing overall differential settlement. The third project involved settlement monitoring of bridge approach fill sections reinforced with Geopier elements. Thirty Geopier elements, spaced 1.8 m apart in six rows of varying length, were installed on both sides of a new bridge on US Highway 18/218 near Charles City, Iowa. Based on the results of this project, it was determined that future applications of Geopier soil reinforcement should consider extending the elements deeper into the embankment foundation fill, not just the fill itself.
Resumo:
To provide insight into subgrade non-uniformity and its effects on pavement performance, this study investigated the influence of non-uniform subgrade support on pavement responses (stress and deflection) that affect pavement performance. Several reconstructed PCC pavement projects in Iowa were studied to document and evaluate the influence of subgrade/subbase non-uniformity on pavement performance. In situ field tests were performed at 12 sites to determine the subgrade/subbase engineering properties and develop a database of engineering parameter values for statistical and numerical analysis. Results of stiffness, moisture and density, strength, and soil classification were used to determine the spatial variability of a given property. Natural subgrade soils, fly ash-stabilized subgrade, reclaimed hydrated fly ash subbase, and granular subbase were studied. The influence of the spatial variability of subgrade/subbase on pavement performance was then evaluated by modeling the elastic properties of the pavement and subgrade using the ISLAB2000 finite element analysis program. A major conclusion from this study is that non-uniform subgrade/subbase stiffness increases localized deflections and causes principal stress concentrations in the pavement, which can lead to fatigue cracking and other types of pavement distresses. Field data show that hydrated fly ash, self-cementing fly ash-stabilized subgrade, and granular subbases exhibit lower variability than natural subgrade soils. Pavement life should be increased through the use of more uniform subgrade support. Subgrade/subbase construction in the future should consider uniformity as a key to long-term pavement performance.
Resumo:
An innovative structural system for pier columns was investigated through a series of laboratory experiments. The columns and connections examined were comprised of precast concrete segments to accelerate construction. In addition some of the columns employed unbonded post-tensioning to self-center the columns when subjected to lateral loads and structural fuses to control large lateral deflections, dissipate energy, and expedite repair in the event of a catastrophic loading event. Six cantilever columns with varying component materials and connection details were subjected to a regimen of vertical dead loads and cyclic, quasi-static lateral loads. One column was designed as a control column to represent the behavior of a conventional reinforced concrete column and provide a basis for comparison with the remaining five jointed columns designed with the proposed structural system. After sustaining significant damage, the self-centering, jointed columns were repaired by replacing the structural fuses and retested to failure to investigate the effectiveness of the repair. The experiments identified both effective and unsatisfactory details for the jointed system. Two of the jointed columns demonstrated equivalent lateral strength, greater lateral stiffness, and greater lateral deformation capacity than the control column. The self-centering capability of the jointed columns was clearly demonstrated as well, and the repair technique proved effective as demonstrated by nearly identical pre and post repair behavior. The authors believe the proposed system to be a feasible alternative to conventional pier systems and recommend further development of details.