978 resultados para stable water isotopes
Resumo:
The central problem of late Quaternary circulation in the South Atlantic is its role in transfer of heat to the North Atlantic, as this modifies amplitude, and perhaps phase, of glacialinterglacial fluctuations. Here we attempt to define the problem and establish ways to attack it. We identify several crucial elements in the dynamics of heat export: (1) warm-water pile-up (and lack thereof) in the Western equatorial Atlantic, (2) general spin-up (or spin-down) of central gyre, tied to SE trades, (3) opening and closing of Cape Valve (Agulhas retroflection), (4) deepwater E-W asymmetry. Means for reconstruction are biogeography, stable isotopes, and productivity proxies. Main results concern overall glacial-interglacial contrast (less pile-up, more spin-up, Cape Valve closed, less NADW during glacial time), dominance of precessional signal in tropics, phase shifts in precessional response. To generate working hypotheses about the dynamics of surface water circulation in the South Atlantic we employ Croll's paradigm that glacial - interglacial fluctuations are analogous to seasonal fluctuations. Our general picture for the last 300 kyrs is that, as concerns the South Atlantic, intensity of surface water (heat) transport depends on the strength of the SE trades. From various lines of evidence it appears that strenger SE trades appeared during glacials and cold substages during interglacials, analogous to conditions in southern winter (August).
Resumo:
Porous seep-carbonates are exposed at mud volcanoes in the eastern Mediterranean Sea. The 13C-depleted aragonitic carbonates formed as a consequence of the anaerobic oxidation of methane in a shallow sub-surface environment. Besides the macroscopically visible cavernous fabric, extensive carbonate corrosion was revealed by detailed analysis. After erosion of the background sediments, the carbonates became exposed to oxygenated bottom waters that are periodically influenced by the release of methane and upward diffusion of hydrogen sulphide. We suggest that carbonate corrosion resulted from acidity locally produced by aerobic oxidation of methane and hydrogen sulphide in the otherwise, with respect to aragonite, oversaturated bottom waters. Although it remains to be tested whether the mechanisms of carbonate dissolution suggested herein are valid, this study reveals that a better estimate of the significance of corrosion is required to assess the amount of methane-derived carbon that is permanently fixed in seep-carbonates.
Resumo:
We sampled the upper water column for living planktic foraminifera along the SW-African continental margin. The species Globorotalia inflata strongly dominates the foraminiferal assemblages with an overall relative abundance of 70-90%. The shell delta18O and delta13C values of G. inflata were measured and compared to the predicted oxygen isotope equilibrium values (delta18O(eq)) and to the carbon isotope composition of the total dissolved inorganic carbon (delta13C(DIC)) of seawater. The delta18O of G. inflata reflects the general gradient observed in the predicted delta18O(eq) profile, while the delta13C of G. inflata shows almost no variation with depth and the reflection of the delta13C(DIC) in the foraminiferal shell seems to be covered by other effects. We found that offsets between delta18O(shell) and predicted delta18O(eq) in the surface mixed layer do not correlate to changes in seawater [CO3[2-]]. To calculate an isotopic mass balance of depth integrated growth, we used the oxygen isotope composition of G. inflata to estimate the fraction of the total shell mass that is grown within each plankton tow depth interval of the upper 500 m of the water column. This approach allows us to calculate the DELTA delta13C(interval added-DIC); i.e. the isotopic composition of calcite that was grown within a given depth interval. Our results consistently show that the DELTA delta13C(IA-DIC) correlates negatively with in situ measured [CO3[2-]] of the ambient water. Using this approach, we found DELTA delta13C(IA-DIC)/[CO3[2-]] slopes for G. inflata in the large size fraction (250-355 µm) of -0.013 per mil to 0.015 per mil (µmol/kg)**-1 and of -0.013 per mil to 0.017 per mil (µmol/kg)**-1 for the smaller specimens (150-250 µm). These slopes are in the range of those found for other non-symbiotic species, such as Globigerina bulloides, from laboratory culture experiments. Since the DELTA delta13C(IA-DIC)/[CO3[2-]] slopes from our field data are nearly identical to the slopes established from laboratory culture experiments we assume that the influence of other effects, such as temperature, are negligibly small. If we correct the delta13C values of G. inflata for a carbonate ion effect, the delta13C(shell) and delta13C(DIC) are correlated with an average offset of 2.11.