972 resultados para spatial metrics
Resumo:
Findings from animal studies suggest that components of fruit and vegetables (F&V) may protect against, and even reverse, age-related decline(1,2) in aspects of cognitive functioning such as spatial working memory (SWM). Human subjects in vivo and in vitro studies indicate that anti-inflammatory, anti-oxidant and cell-signalling properties of flavonoids and carotenoids, non-nutrient components of F&V, may underpin this protective effect(3–5). The Flavonoid University of Reading Study (FLAVURS), designed to explore the dose-response relationship between dietary F&V flavonoids and CVD, enabled the investigation of such an association with SWM. FLAVURS is an 18-week parallel three-arm randomised controlled dietary intervention trial with four time points, measured at 6-weekly intervals from baseline. Low F&V consumers at risk of CVD aged 26–70 years were randomly assigned to high flavonoid (HF), low flavonoid (LF) or control group. F&V intake increased by two daily 80 g portions every 6 weeks, with either HF or LF F&V, in addition to each participant's habitual diet, while controls maintained their habitual diet. At each visit, participants completed a cognitive test battery with SWM as the primary outcome. The HF group showed significantly higher levels of urinary flavonoids than LF or controls at 12 weeks (P<0.001) as expected, but surprisingly only higher levels than LF at 18 weeks (P<0.01). The LF group showed higher levels of plasma carotenoids than the other groups at 18 weeks (P<0.001). No group differences were found for SWM overall, however, age-group sub-analyses (26–50 and 51–70 years of age) showed differences from 0 to 18 weeks for younger adults, with LF improving significantly more than the other two groups on SWM (P<0.05). As nutritional absorption is known to decrease with age, separate stepwise regressions were performed on the two age groups irrespective of dietary group, with urinary flavonoids and plasma carotenoids as predictors. For younger adults, improved SWM performance from 0 to 18 weeks was associated with higher carotenoid levels, β=0.28, t(55)=2.10, P<0.05, accounting for 7.5% of the variance, R2=0.075, F(1,54)=4.41, P=0.040. For older adults, no between-group SWM differences were found. Findings suggest that F&V-based flavonoids and carotenoids may provide benefits for cognitive function, and that carotenoids in particular may improve cognitive performance in SWM. Given that these benefits were restricted to younger adults, future work is needed to test the reliability of this finding, as well as determine the mechanisms by which age-dependent differences in F&V responsiveness occur.
Resumo:
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
Resumo:
We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.
Resumo:
Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPP_P) and sustained (GPP_S) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPP_P and GPP_S formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPP_P and GPP_S varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPP_S at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPP_P and GPP_S for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a references gas, the GPP_P and GPP_S for the non-CO2 species are larger than the corresponding GTP values. For BC emissions, the atmospheric forcing is sufficiently strong that the GPP_S is opposite in sign to the GTP_S. The sensitivity of these values to a number of input parameters is explored. The GPP can also be used to evaluate the contribution of different emissions to precipitation change during or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008 (using the GPP_P) and emissions sustained at 2008 levels (using the GPP_S) are presented. These indicate that for periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum of the effect of the five species included here does not become positive until after 50 years, by which time the global surface temperature increase exceeds 1 K.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant–soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.
Resumo:
Housebuilding firms vary across the world in size and in the scope of their activities. This variety may seem surprising in an industry with open technologies and ease of entry. While market and technological factors may go some way to explain such differences, much of the causes of variation lie in dissimilarities in regulatory and institutional frameworks. These themes are explored through a comparative analysis of the structure of the residential development industry in Australia, the UK and the USA and in analysis of firm size hierarchies. The firm concentration ratio is much higher in the UK than the other two countries and the reasons may lie in the geography of the country but also in the peculiarities of its planning system.
Resumo:
We present the first multi-event study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wavenumber with the most unstable spatial scales mapping to an azimuthal wavelength λ≈1700 − 2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the cross-field current instability and the shear-flow ballooning instability. We conclude that, although the cross-field current instability can generate similar magnitude of growth rates, the range of unstable wavenumbers indicates that the shear-flow ballooning instability is the most likely explanation for our observations.
Resumo:
In many lower-income countries, the establishment of marine protected areas (MPAs) involves significant opportunity costs for artisanal fishers, reflected in changes in how they allocate their labor in response to the MPA. The resource economics literature rarely addresses such labor allocation decisions of artisanal fishers and how, in turn, these contribute to the impact of MPAs on fish stocks, yield, and income. This paper develops a spatial bio-economic model of a fishery adjacent to a village of people who allocate their labor between fishing and on-shore wage opportunities to establish a spatial Nash equilibrium at a steady state fish stock in response to various locations for no-take zone MPAs and managed access MPAs. Villagers’ fishing location decisions are based on distance costs, fishing returns, and wages. Here, the MPA location determines its impact on fish stocks, fish yield, and villager income due to distance costs, congestion, and fish dispersal. Incorporating wage labor opportunities into the framework allows examination of the MPA’s impact on rural incomes, with results determining that win-wins between yield and stocks occur in very different MPA locations than do win-wins between income and stocks. Similarly, villagers in a high-wage setting face a lower burden from MPAs than do those in low-wage settings. Motivated by issues of central importance in Tanzania and Costa Rica, we impose various policies on this fishery – location specific no-take zones, increasing on-shore wages, and restricting MPA access to a subset of villagers – to analyze the impact of an MPA on fish stocks and rural incomes in such settings.
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Resumo:
Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.
Resumo:
Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.
Resumo:
Within-field variation in sugar beet yield and quality was investigated in three commercial sugar beet fields in the east of England to identify the main associated variables and to examine the possibility of predicting yield early in the season with a view to spatially variable management of sugar beet crops. Irregular grid sampling with some purposively-located nested samples was applied. It revealed the spatial variability in each sugar beet field efficiently. In geostatistical analyses, most variograms were isotropic with moderate to strong spatial dependency indicating a significant spatial variation in sugar beet yield and associated growth and environmental variables in all directions within each field. The Kriged maps showed spatial patterns of yield variability within each field and visual association with the maps of other variables. This was confirmed by redundancy analyses and Pearson correlation coefficients. The main variables associated with yield variability were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged maps of final yield variability were strongly related to that in crop canopy cover, LAI and intercepted solar radiation early in the growing season, and the yield maps of previous crops. Therefore, yield maps of previous crops together with early assessment of sugar beet growth may make an early prediction of within-field variability in sugar beet yield possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in sugar yield, but the simulation was greatly improved when corrected for early canopy development cover and when the simulated yield was adjusted for weeds and plant population. Further research to optimize inputs to maximise sugar yield should target the irrigation and fertilizing of areas within fields with low canopy cover early in the season.
Temporal and spatial variability of surface fluxes over the ice edge zone in the northern Baltic Sea
Resumo:
Three land-fast ice stations (one of them was the Finnish research ice breaker Aranda) and the German research aircraft Falcon were applied to measure the turbulent and radiation fluxes over the ice edge zone in the northern Baltic Sea during the Baltic Air-Sea-Ice Study (BASIS) field experiment from 16 February to 6 March 1998. The temporal and spatial variability of the surface fluxes is discussed. Synoptic weather systems passed the experimental area in a rapid sequence and dominated the conditions (wind speed, airsurface temperature difference, cloud field) for the variability of the turbulent and radiation fluxes. At the ice stations, the largest upward sensible heat fluxes of about 100 Wm�2 were measured during the passage of a cold front when the air cooled faster (�5 K per hour) than the surface. The largest downward flux of about �200 Wm�2 occurred during warm air advection when the air temperature reached +10�C but the surface temperature remained at 0�C. Spatial variability of fluxes was observed from the small scale (scale of ice floes and open water spots) to the mesoscale (width of the ice edge zone). The degree of spatial variability depends on the synoptic situation: during melting conditions downward heat fluxes were the same over ice and open water, whereas during strong cold-air advection upward heat fluxes differed by more than 100 Wm�2. A remarkable amount of grey ice with intermediate surface temperature was observed. The ice in the Baltic Sea cannot be described by one ice type only.