994 resultados para silicone polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion coefficients(D-app) and the heterogeneous electron-transfer rate constants(k(s)) for ferrocene and its seven derivatives in MPEG/LiClO4 electrolyte were determined by using steady-state voltammetry. The two parameters increase with increasing temperature, indicating Arrhenius behavior. The effects of the nature of electroactive solute molecules on D-app, k(s), and the half-wave potentials(E-1/2) are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three comb polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were synthesized and characterized, and the ionic conductivity of CP/salt complexes is reported. The conductivity of these complexes was about 10(-5)-10(-6) S cm(-1) at room temperature. The conductivity, which displayed non-Arrhenius behaviour, was analysed using the Vogel-Tammann-Fulcher equation. The conductivity maxima appear at lower salt concentration, when CP has longer side chains. Infrared (i.r.) was used to study the cation-polymer interaction. I.r. results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with lithium salts to form amorphous polymer electrolytes. CP/salt complexes showed conductivity up to 10(-5)Scm(-1) at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycarbonate (PC) and a core-shell latex polymer composed of poly(butyl acrylate) and poly(methyl methacrylate) (PBA-cs-PMMA) as core and shell, respectively, were mixed using a Brabender-like apparatus under different conditions. The mechanical properties, the morphology and the processability of the blends were investigated. Because of the good compatibility of PC and PMMA, even dispersion of PBA-cs-PMMA in PC matrix and good adhesion between the components have been achieved. PBA-cs-PMMA is thus a very good impact modifier for PC. The toughening mechanism is both cavitation and shear yielding, as indicated by SEM observation. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behaviour and ion-transport properties of a comb polymer electrolyte CP350/LiSCN based on methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains were studied by means of DSC and ac impedance method. The two glass transition temperatures which can be attributed to side chains and main chains respectively were found to increase with increasing salt concentration. Conductivities which displayed non-Arrhenius behaviour were analyzed by using Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model derived by Gibbs and coworkers. The optimum ionic conductivity at 25 degrees C achieved was 2.19x10(-5)S/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type-O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with LiNO3 to form an amorphous polymer electrolyte. CP/salt complexes showed conductivity up to 10(-5) S/cm at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpenetrating polymer networks (IPNs) based on polyacrylate (poly(polyethylene glycol diacrylate), PEGDA) and epoxy(diglycidyl ether of bisphenol A, DGEBA) were prepared simultaneously Dynamic mechanical properties of the SINs (simultaneous interpenetrating networks) with various compositions were studied. Enhanced mechanical properties were found in this case. From the point of view of pre-swollen networks, all of the PEGDA/DGEBA IPNs were composed of the individual pre-swollen networks. A micro-phase segregation system was produced in the SIN. Glass transition temperatures shifted inward, which was attributed to molecular packing effects or mutual-entanglements of molecular segments among the individual pre-swollen networks. In accordance with the additivity of properties, namely the parallel model, the entanglement density between the two polymer networks reached its maximum at 50/50 PEGDA/DGEBA IPN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly ordered single crystal carbon material, highly oriented pyrolytic graphite (HOPG) has been successfully employed as a working electrode in an electrochemical quartz crystal microbalance study. RTV silicone rubber is selected to adhere the HOPG film onto the quartz crystal surface. Such modified quartz crystal can oscillate with stable frequency. The electrode modified in this way has good electrochemical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of rubbery 'polymer-in-salt' electrolytes for application in solid-state lithium batteries has been explored by differential scanning calorimetry and a.c. impedance analysis. Simple phase diagrams of LiN(CF3SO2)(2)+LiClO4 and LiC(CF3SO2)(3)+LiN(CF3SO2)(2) have been drawn, which are very important to determine polymer-in-salt electrolyte materials. The conductivities obtained by a.c. impedance measurement are smaller for the electrolyte that contains acetate LiOAc salt than for the electrolyte without this salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new amorphous comblike polymer (CBP) based on methylvinyl ether/maleic anhydride altering copolymer backbone and on oligooxyethylene side chain was synthesized. The dynamic mechanical properties of CBP and its Li salt complexes were investigated by means of DDV-11-EA type viscoelastic spectrometry. Results showed that there were two glass transitions (alpha-transition and beta-transition) in the temperature range from -100 to 100 degrees C. The beta-transition was assigned to oligo-PEO side chains and the temperature of beta-transition increases with increasing Li salt content. The alpha-transition was assigned to the main chain of CBP. The temperature of the alpha-transition (T-alpha) is also dependent upon the Li-salt content, but not monotonic. The value of T-alpha lies between 30-45 degrees C in the Li salt concentration range studied, near room temperature. It was found that the CBP-Li salt complexes showed an unusual dependence of ionic conductivity on Li salt content. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration, which has been ascribed to the movability of the CBP main chain at ambient temperature. The temperature dependence bf the ionic conductivity indicated that the Arrhenius relationship was not obeyed, and the plot of log sigma against 1/(T - T-0) showed the unusual dual VTF behavior when using side chain glass transition temperature (T-beta) as T-0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.