918 resultados para silent agreements
Resumo:
Mycobacterium tuberculosis is one of the most successful human pathogens. It kills every year approximately 1.5 - 2 million people, and at present a third of the human population is estimated to be infected. Fortunately, only a relatively small proportion of the infected individuals will progress to active disease, and most will maintain a latent infection. Although a latent infection is clinically silent and not contagious, it can reactivate to cause highly contagious pulmonary tuberculosis, the most prevalent form of the disease in adults. Therefore, a thorough understanding of latency and reactivation may help to develop novel control strategies against tuberculosis. The most widely held view is that the mycobacteria are imprisoned in granulomatous structures during latency, where they can survive in a non-replicating, dormant form until reactivation occurs. However, there is no hard data to sustain that the reactivating mycobacteria are indeed those that laid dormant within the granulomas. In this review an alternative model, based on evidence from early studies, as well as recent reports is presented, in which the latent mycobacteria reside outside granulomas, within non-macrophage cell types throughout the infected body. Potential implications for new diagnostic and vaccine design are discussed.
Resumo:
We provide a select overview of tools supporting traditional Jewish learning. Then we go on to discuss our own HyperJoseph/HyperIsaac project in instructional hypermedia. Its application is to teaching, teacher training, and self-instruction in given Bible passages. The treatment of two narratives has been developed thus far. The tool enables an analysis of the text in several respects: linguistic, narratological, etc. Moreover, the Scriptures' focality throughout the cultural history makes this domain of application particularly challenging, in that there is a requirement for the tool to encompass the accretion of receptions in the cultural repertoire, i.e., several layers of textual traditions—either hermeneutic (i.e., interpretive), or appropriations—related to the given core passage, thus including "secondary" texts (i.e., such that are responding or derivative) from as disparate realms as Roman-age and later homiletics, Medieval and later commentaries or supercommentaries, literary appropriations, references to the arts and modern scholarship, etc. in particular, the Midrash (homiletic expansions) is adept at narrative gap filling, so the narratives mushroom at the interstices where the primary text is silent. The genealogy of the project is rooted in Weiss' index of novelist Agnon's writings, which was eventually upgraded into a hypertextual tool, including Agnon's full-text and ancillary materials. Those early tools being intended primarily for reference and research-support in literary studies, the Agnon hypertext system was initially emulated in the conception of HyperJoseph, which is applied to the Joseph story from Genesis. Then, the transition from a tool for reference to an instructional tool required a thorough reconception in an educational perspective, which led to HyperIsaac, on the sacrifice of Isaac, and to a redesign and upgrade of HyperJoseph as patterned after HyperIsaac.
Resumo:
A toxicity model on dividing the computational domain into two parts, a control region (CR) and a transport region (TR), for species calculation was recently developed. The model can be incorporated with either the heat source approach or the eddy dissipation model (EDM). The work described in this paper is a further application of the toxicity model with modifications of the EDM for vitiated fires. In the modified EDM, chemical reaction only occurs within the CR. This is consistent with the approach used in the species concentration calculations within the toxicity model in which yields of combustion products only change within the CR. A vitiated large room-corridor fire, in which the carbon monoxide (CM) concentrations are very high and the temperatures are relatively low at locations distant from the original fire source, is simulated using the modified EDM coupled with the toxicity model. Compared with the EDM, the modified EDM provide significant improvements in the predictions of temperatures at remote locations. Predictions of species concentrations at various locations follow the measured trends. Good agreements between the measured and predicted species concentrations are obtained at the vitiated fire stage.