942 resultados para shell color
Resumo:
In this work a new europium (III) complex with the following formula NH(4) [Eu(bmdm)(4)] was synthesized and characterized. The bmdm (butyl methoxy-dibenzoyl-methane) is a P-diketone molecule used as UV radiation absorber in sunscreen formulations. Coordination of this ligand to the Eu(3+) ion was confinned by FT-IR, while the Raman spectrum suggests the presence of NH(4)(+) ions. The photoluminescence spectra present narrow lines arising from f-f intra-configurational transitions (5)D(0-)(7)F(0,1,2,3,4), dominated by the hypersensitive (5)D(0)-(7)F(2) transition. In the spectrum recorded at 77 K, all transitions split into 2J + 1 lines suggesting that there is just one symmetry site around Eu(3+) ion. This symmetry is not centrosymmetric. The calculated intensity parameters are ohm(2) = 30.5 x 10(-20) cm(2) and ohm(4) = 5.91 x 10(-20) cm(2) for this complex. The CIE chromaticity coordinates (x = 0.67 and y = 0.32) show a dominant wavelength of 615 nm. The color gamut achieved by this complex is a 100% in the CIE color space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Late Cambrian (Furongian) shell beds in the Salta Province of NW Argentina are unique because of the presence of abundant hyolith skeletal remains within them. Hyolith shell beds are located in the mid-upper part of the Lampazar Formation at the Angosto de La Quesera locality, and are the first recorded accumulations of this type in the lower Palaeozoic of the South American Andean Basin. The shell beds are of the order of several mm thick, and are laterally persistent within outcrop scale, with a few metres of lateral development. Two types of hyolith shell beds are recognised: Type 1 is a storm-dominated, event concentration, represented by dispersed to densely packed accumulations of well preserved hyolith and gastropod shells (Strepsodiscus austrinus). Hyolith conchs are current oriented with the long axes parallel to unidirectional flow on the sandstones surfaces. Type 2 shell beds are background, composite concentrations, of poorly preserved, comminuted debris of hyolith shells with associated gastropod and trilobite sclerites (dominated by Parabolina, Beltella and Leiostegium). The genesis of both shell beds was controlled primarily by physical processes, such as storms and current and/or wave agitation. The thickness, simple internal fabric and geometry shown by both accumulations are typical of Cambrian-style shell-beds.
Resumo:
Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ C-14 measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. on average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to estimate NPP in coastal areas would likely further reduce the skill of ocean color models.
Resumo:
We point out that off-shell four-dimensional spacetime supersymmetry implies strange Hermiticity properties for the N = 1 Ramond-Neveu-Schwarz superstring. However, these Hermiticity properties become natural when the N = 1 superstring is embedded into an N = 2 superstring.
Resumo:
We perform a self-consistent relativistic RPA calculation for the isobaric analogue and Gamow-Teller resonances based on relativistic mean field theory results for the ground states of 48Ca, 90Zr and 208Pb. We use the parameter set NL1 for the σ, ω and ρ mesons, and experimental values for the pion and nucleon. An extra parameter, related to the intensity of the contact term in the pion-exchange interaction, is crucial to reproduce the latter resonances. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A new hemiodontid species, Hemiodus tocantinensis, is described from the rio Tocantins, Amazon basin, Brazil. It is most closely related to H. ternezi and H. thayeria based on the presence of a dark longitudinal stripe extending from behind the eye or the opercle to the tip of lower caudal fin lobe but is distinguished by the possession of 51 to 58 perforated lateral line scales and an oblique dark blotch on the dorsal fin extending from its anterior distal portion through the middle basal portion of the fin. The evolution of color patterns and tooth shapes present in the Hemiodus species is commented.
Resumo:
We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global color model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.
Resumo:
We investigated if differences in morphological characters in two species of Metrodorea (Rutaceae) from Brazilian semideciduous forests correspond to some pollination divergence. M. nigra and M. stipularis are sympatric species, display a similar floral morphology, are protandrous, self-incompatible, their flower periods overlap, and both are pollinated by flies. M. nigra main pollinators are Pseudoptiloleps nigripoda (Muscidae) and Fannia sp. (Fanniidae); M. stipularis major pollinators are Phaenicia eximia (Calliphoridae), Palpada sp. and Ornidia obesa (Syrphidae). The distinct floral odor (disagreeable in M. nigra and sweet in M. stipularis) and color (brownish violet vs. pale yellow) determine the differences on type and number of floral visitors observed. Several species from semideciduous forests initially considered to be pollinated by diverse insects, present flies as main pollinators, stressing the importance of fly pollination in such habitats.