935 resultados para sequential change detection
Resumo:
Online social networks can be modelled as graphs; in this paper, we analyze the use of graph metrics for identifying users with anomalous relationships to other users. A framework is proposed for analyzing the effectiveness of various graph theoretic properties such as the number of neighbouring nodes and edges, betweenness centrality, and community cohesiveness in detecting anomalous users. Experimental results on real-world data collected from online social networks show that the majority of users typically have friends who are friends themselves, whereas anomalous users’ graphs typically do not follow this common rule. Empirical analysis also shows that the relationship between average betweenness centrality and edges identifies anomalies more accurately than other approaches.
Resumo:
Smartphones are getting increasingly popular and several malwares appeared targeting these devices. General countermeasures to smartphone malwares are currently limited to signature-based antivirus scanners which efficiently detect known malwares, but they have serious shortcomings with new and unknown malwares creating a window of opportunity for attackers. As smartphones become host for sensitive data and applications, extended malware detection mechanisms are necessary complying with the corresponding resource constraints. The contribution of this paper is twofold. First, we perform static analysis on the executables to extract their function calls in Android environment using the command readelf. Function call lists are compared with malware executables for classifying them with PART, Prism and Nearest Neighbor Algorithms. Second, we present a collaborative malware detection approach to extend these results. Corresponding simulation results are presented.
Resumo:
Smartphones are steadily gaining popularity, creating new application areas as their capabilities increase in terms of computational power, sensors and communication. Emerging new features of mobile devices give opportunity to new threats. Android is one of the newer operating systems targeting smartphones. While being based on a Linux kernel, Android has unique properties and specific limitations due to its mobile nature. This makes it harder to detect and react upon malware attacks if using conventional techniques. In this paper, we propose an Android Application Sandbox (AASandbox) which is able to perform both static and dynamic analysis on Android programs to automatically detect suspicious applications. Static analysis scans the software for malicious patterns without installing it. Dynamic analysis executes the application in a fully isolated environment, i.e. sandbox, which intervenes and logs low-level interactions with the system for further analysis. Both the sandbox and the detection algorithms can be deployed in the cloud, providing a fast and distributed detection of suspicious software in a mobile software store akin to Google's Android Market. Additionally, AASandbox might be used to improve the efficiency of classical anti-virus applications available for the Android operating system.
Resumo:
Complex Internet attacks may come from multiple sources, and target multiple networks and technologies. Nevertheless, Collaborative Intrusion Detection Systems (CIDS) emerges as a promising solution by using information from multiple sources to gain a better understanding of objective and impact of complex Internet attacks. CIDS also help to cope with classical problems of Intrusion Detection Systems (IDS) such as zero-day attacks, high false alarm rates and architectural challenges, e. g., centralized designs exposing the Single-Point-of-Failure. Improved complexity on the other hand gives raise to new exploitation opportunities for adversaries. The contribution of this paper is twofold. We first investigate related research on CIDS to identify the common building blocks and to understand vulnerabilities of the Collaborative Intrusion Detection Framework (CIDF). Second, we focus on the problem of anonymity preservation in a decentralized intrusion detection related message exchange scheme. We use techniques from design theory to provide multi-path peer-to-peer communication scheme where the adversary can not perform better than guessing randomly the originator of an alert message.
Resumo:
This thesis aims to contribute to a better understanding of how serious games/games for change function as learning frameworks for transformative learning in an educational setting. This study illustrates how the meaning-making processes and learning with and through computer gameplay are highly contingent, and are significantly influenced by the uncertainties of the situational context. The study focuses on SCAPE, a simulation game that addresses urban planning and sustainability. SCAPE is based on the real-world scenario of Kelvin Grove Urban Village, an inner city redevelopment area in Brisbane, Queensland, Australia. The game is embedded within an educational program, and I thus account for the various gameplay experiences of different school classes participating in this program. The networks emerging from the interactions between students/players, educators, facilitators, the technology, the researcher, as well as the setting, result in unanticipated, controversial, and sometimes unintended gameplay experiences and outcomes. To unpack play, transformative learning and games, this study adopts an ecological approach that considers the magic circle of gameplay in its wider context. Using Actor-Network Theory as the ontological lens for inquiry, the methods for investigation include an extensive literature review, ethnographic participant observation of SCAPE, as well as student and teacher questionnaires, finishing with interviews with the designers and facilitators of SCAPE. Altogether, these methods address my research aim to better understand how the heterogeneous actors engage in the relationships in and around gameplay, and illustrate how their conflicting understandings enable, shape or constrain the (transformative) learning experience. To disentangle these complexities, my focus continuously shifts between the following modes of inquiry into the aims „h To describe and analyse the game as a designed artefact. „h To examine the gameplay experiences of players/students and account for how these experiences are constituted in the relationships of the network. „h To trace the meaning-making processes emerging from the various relations of players/students, facilitators, teachers, designers, technology, researcher, and setting, and consider how the boundaries of the respective ecology are configured and negotiated. „h To draw out the implications for the wider research area of game-based learning by using the simulation game SCAPE as an example for introducing gameplay to educational settings. Accounting in detail for five school classes, these accounts represent, each in its own right, distinct and sometimes controversial forms of engagement in gameplay. The practices and negotiations of all the assembled human and non-human actors highlight the contingent nature of gameplay and learning. In their sum, they offer distinct but by no means exhaustive examples of the various relationships that emerge from the different assemblages of human and non-human actors. This thesis, hence, illustrates that game-based learning in an educational setting is accompanied by considerable unpredictability and uncertainty. As ordinary life spills and leaks into gameplay experiences, group dynamics and the negotiations of technology, I argue that overly deterministic assertions of the game¡¦s intention, as well as a too narrowly defined understanding of the transformative learning outcome, can constrain our inquiries and hinder efforts to further elucidate and understand the evolving uncertainties around game-based learning. Instead, this thesis posits that playing and transformative learning are relational effects of the respective ecology, where all actors are networked in their (partial) enrolment in the process of translation. This study thus attempts to foreground the rich opportunities for exploring how game-based learning is assembled as a network of practices.
Resumo:
Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.
Resumo:
Polymerase chain reaction (PCR) was developed for the detection of Banana bunchy top virus (BBTV) at maximum after 210 min and at minimum after 90 min using Pc-1 and Pc-2, respectively. PCR detection of BBTV in crude sap indicated that the freezing of banana tissue in liquid nitrogen (LN2) before extraction was more effective than using sand as the extraction technique. BBTV was also detected using PCR assay in 69 healthy and diseased plants using Na-PO4 buffer containing 1 % SDS. PCR detection of BBTV in nucleic acid extracts using seven different extraction buffers to adapt the use of PCR in routine detection in the field was studied. Results proved that BBTV was detected with high sensitivity in nucleic acid extracts more than in infectious sap. The results also suggested the common aetiology for the BBTV by the PCR reactions of BBTV in nucleic acid extracts from Australia, Burundi, Egypt, France, Gabon, Philippines and Taiwan. Results also proved a positive relation between the Egyptian-BBTV isolate and abaca bunchy top isolate from the Philippines, but there no relation was found with the Cucumber mosaic cucumovirus (CMV) isolates from Egypt and Philippines and Banana bract mosaic virus (BBMV) were found.
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
We consider Cooperative Intrusion Detection System (CIDS) which is a distributed AIS-based (Artificial Immune System) IDS where nodes collaborate over a peer-to-peer overlay network. The AIS uses the negative selection algorithm for the selection of detectors (e.g., vectors of features such as CPU utilization, memory usage and network activity). For better detection performance, selection of all possible detectors for a node is desirable but it may not be feasible due to storage and computational overheads. Limiting the number of detectors on the other hand comes with the danger of missing attacks. We present a scheme for the controlled and decentralized division of detector sets where each IDS is assigned to a region of the feature space. We investigate the trade-off between scalability and robustness of detector sets. We address the problem of self-organization in CIDS so that each node generates a distinct set of the detectors to maximize the coverage of the feature space while pairs of nodes exchange their detector sets to provide a controlled level of redundancy. Our contribution is twofold. First, we use Symmetric Balanced Incomplete Block Design, Generalized Quadrangles and Ramanujan Expander Graph based deterministic techniques from combinatorial design theory and graph theory to decide how many and which detectors are exchanged between which pair of IDS nodes. Second, we use a classical epidemic model (SIR model) to show how properties from deterministic techniques can help us to reduce the attack spread rate.
Resumo:
News blog hot topics are important for the information recommendation service and marketing. However, information overload and personalized management make the information arrangement more difficult. Moreover, what influences the formation and development of blog hot topics is seldom paid attention to. In order to correctly detect news blog hot topics, the paper first analyzes the development of topics in a new perspective based on W2T (Wisdom Web of Things) methodology. Namely, the characteristics of blog users, context of topic propagation and information granularity are unified to analyze the related problems. Some factors such as the user behavior pattern, network opinion and opinion leader are subsequently identified to be important for the development of topics. Then the topic model based on the view of event reports is constructed. At last, hot topics are identified by the duration, topic novelty, degree of topic growth and degree of user attention. The experimental results show that the proposed method is feasible and effective.
Resumo:
Knowledge of the elements present in house dusts is important in understanding potential health effects on humans. In this study, dust samples collected from 10 houses in south-east Queensland have been analysed by scanning electron microscopy and X-ray microanalysis to measure the inorganic element compositions and to investigate the form of heavy metals in the dusts. The overall analytical results were then used to discriminate between different localities using chemometric techniques. The relative amounts of elements, particularly of Si, Ca, and Fe, varied between size fractions and between different locations for the same size fraction. By analysing individual small particles, many other constituents were identified including Ti, Cr, Mn, Ni, Cu, Zn, Ba, Ag, W, Au, Hg, Pb, Bi, La and Ce. The heavy metals were mostly concentrated in small particles in the smaller size fractions, which allowed detection by particle analysis, though their average concentrations were very low.
Resumo:
Static anaylsis represents an approach of checking source code or compiled code of applications before it gets executed. Chess and McGraw state that static anaylsis promises to identify common coding problems automatically. While manual code checking is also a form of static analysis, software tools are used in most cases in order to perform the checks. Chess and McGraw additionaly claim that good static checkers can help to spot and eradicate common security bugs.
Resumo:
We propose CIMD (Collaborative Intrusion and Malware Detection), a scheme for the realization of collaborative intrusion detection approaches. We argue that teams, respectively detection groups with a common purpose for intrusion detection and response, improve the measures against malware. CIMD provides a collaboration model, a decentralized group formation and an anonymous communication scheme. Participating agents can convey intrusion detection related objectives and associated interests for collaboration partners. These interests are based on intrusion objectives and associated interests for collaboration partners. These interests are based on intrusion detection related ontology, incorporating network and hardware configurations and detection capabilities. Anonymous Communication provided by CIMD allows communication beyond suspicion, i.e. the adversary can not perform better than guessing an IDS to be the source of a message at random. The evaluation takes place with the help of NeSSi² (www.nessi2.de), the Network Security Simulator, a dedicated environment for analysis of attacks and countermeasures in mid-scale and large-scale networks. A CIMD prototype is being built based on the JIAC agent framework(www.jiac.de).