935 resultados para sensory cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) studies can provide insight into the neural correlates of hallucinations. Commonly, such studies require self-reports about the timing of the hallucination events. While many studies have found activity in higher-order sensory cortical areas, only a few have demonstrated activity of the primary auditory cortex during auditory verbal hallucinations. In this case, using self-reports as a model of brain activity may not be sensitive enough to capture all neurophysiological signals related to hallucinations. We used spatial independent component analysis (sICA) to extract the activity patterns associated with auditory verbal hallucinations in six schizophrenia patients. SICA decomposes the functional data set into a set of spatial maps without the use of any input function. The resulting activity patterns from auditory and sensorimotor components were further analyzed in a single-subject fashion using a visualization tool that allows for easy inspection of the variability of regional brain responses. We found bilateral auditory cortex activity, including Heschl's gyrus, during hallucinations of one patient, and unilateral auditory cortex activity in two more patients. The associated time courses showed a large variability in the shape, amplitude, and time of onset relative to the self-reports. However, the average of the time courses during hallucinations showed a clear association with this clinical phenomenon. We suggest that detection of this activity may be facilitated by examining hallucination epochs of sufficient length, in combination with a data-driven approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmortem examinations and magnetic resonance imaging (MRI) studies suggest involvement of the entorhinal cortex (EC) in schizophrenic psychoses. However, the extent and nature of the possible pathogenetical process underlying the observed alterations of this limbic key region for processing of multimodal sensory information remains unclear. Three-dimensional high-resolution MRI volumetry and evaluation of the regional diffusional anisotropy based on diffusion tensor imaging (DTI) were performed on the EC of 15 paranoid schizophrenic patients and 15 closely matched control subjects. In schizophrenic patients, EC volumes showed a slight, but not significant, decrease. However, the anisotropy values, expressed as inter-voxel coherences (COH), were found to be significantly decreased by 17.9% (right side) and 12.5% (left side), respectively, in schizophrenics. Reduction of entorhinal diffusional anisotropy can be hypothesized to be functionally related to disturbances in the perforant path, the principal efferent EC fiber tract supplying the limbic system with neuronal input from multimodal association centers. Combinations of different MRI modalities are a promising approach for the detection and characterization of subtle brain tissue alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combined repetitive transcranial magnetic stimulation (rTMS) and functional magnetic resonance imaging (fMRI) to investigate the functional relevance of parietal cortex activation during the performance of visuospatial tasks. fMRI provides information about local transient changes in neuronal activation during behavioural or cognitive tasks. Information on the functional relevance of this activation was obtained by using rTMS to induce temporary regional deactivations. We thereby turned the physiological parameter of brain activity into an independent variable controlled and manipulated by the experimenter and investigated its effect on the performance of the cognitive tasks within a controlled experimental design. We investigated cognitive tasks that were performed on the same visual material but differed in the demand on visuospatial functions. For the visuospatial tasks we found a selective enhancement of fMRI signal in the superior parietal lobule (SPL) and a selective impairment of performance after rTMS to this region in comparison to a control group. We could thus show that the parietal cortex is functionally important for the execution of spatial judgements on visually presented material and that TMS as an experimental tool has the potential to interfere with higher cognitive functions such as visuospatial information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the anti-saccade paradigm, subjects are instructed not to make a reflexive saccade to an appearing lateral target but to make an intentional saccade to the opposite side instead. The inhibition of reflexive saccade triggering is under the control of the dorsolateral prefrontal cortex (DLPFC). The critical time interval at which this inhibition takes place during the paradigm, however, is not exactly known. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to interfere with DLPFC function in 15 healthy subjects. TMS was applied over the right DLPFC either 100 ms before the onset of the visual target (i.e. -100 ms), at target onset (i.e. 0 ms) or 100 ms after target onset (i.e. +100 ms). Stimulation 100 ms before target onset significantly increased the percentage of anti-saccade errors to both sides, while stimulation at, or after, target onset had no significant effect. All three stimulation conditions had no significant influence on saccade latency of correct or erroneous anti-saccades. These findings show that the critical time interval at which the DLPFC controls the suppression of a reflexive saccade in the anti-saccade paradigm is before target onset. In addition, the results suggest the view that the triggering of correct anti-saccades is not under direct control of the DLPFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Calcitonin was effective in a study of acute phantom limb pain, but it was not studied in the chronic phase. The overall literature on N-methyl-D-aspartate antagonists is equivocal. We tested the hypothesis that calcitonin, ketamine, and their combination are effective in treating chronic phantom limb pain. Our secondary aim was to improve our understanding of the mechanisms of action of the investigated drugs using quantitative sensory testing. METHODS: Twenty patients received, in a randomized, double-blind, crossover manner, 4 i.v. infusions of: 200 IE calcitonin; ketamine 0.4 mg/kg (only 10 patients); 200 IE of calcitonin combined with ketamine 0.4 mg/kg; placebo, 0.9% saline. Intensity of phantom pain (visual analog scale) was recorded before, during, at the end, and the 48 h after each infusion. Pain thresholds after electrical, thermal, and pressure stimulation were recorded before and during each infusion. RESULTS: Ketamine, but not calcitonin, reduced phantom limb pain. The combination was not superior to ketamine alone. There was no difference in basal pain thresholds between the amputated and contralateral side except for pressure pain. Pain thresholds were unaffected by calcitonin. The analgesic effect of the combination of calcitonin and ketamine was associated with a significant increase in electrical thresholds, but with no change in pressure and heat thresholds. CONCLUSIONS: Our results question the usefulness of calcitonin in chronic phantom limb pain and stress the potential interest of N-methyl-D-aspartate antagonists. Sensory assessments indicated that peripheral mechanisms are unlikely important determinants of phantom limb pain. Ketamine, but not calcitonin, affects central sensitization processes that are probably involved in the pathophysiology of phantom limb pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Sensory hypersensitivity, central hyperexcitability [lowered nociceptive flexion reflex (NFR) thresholds], and psychologic distress are features of chronic whiplash. However, relationships between these substrates are not clear. This study tested the hypothesis that psychologic distress and catastrophization are correlated with sensory hypersensitivity and NFR responses in chronic whiplash. METHODS: Pressure and thermal pain thresholds (mean values across 3 body sites), NFR threshold, and pain at threshold Visual Analog Scale were measured in 30 participants with chronic whiplash and 30 asymptomatic controls. Pain and disability levels Neck Disability Index, psychologic distress (GHQ-28), and catastrophization (PCS) were also measured in the whiplash group. RESULTS: Whiplash injured participants demonstrated lowered pain thresholds to pressure and cold (P<0.05); lowered NFR thresholds (P=0.003), and demonstrated above threshold levels of psychologic distress (GHQ-28) and levels of catastrophization comparable with other musculoskeletal conditions. There were no group differences for heat pain thresholds or pain at NFR threshold. In the whiplash group, PCS scores correlated moderately with cold pain threshold (r=0.51, P=0.01). In contrast, there were no significant correlations between GHQ-28 scores and pain threshold measures or between psychologic factors and NFR responses in whiplash participants. There were no significant correlations between psychologic factors and pain thresholds or NFR responses in controls. DISCUSSION: We have demonstrated that psychologic factors have some association with sensory hypersensitivity (cold pain threshold measures) in chronic whiplash but do not seem to influence spinal cord excitability. This suggests that psychologic disorders are important, but not the only, determinants of central hypersensitivity in whiplash patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this article is to report our preliminary results regarding microsurgical repair of the sural nerve after nerve biopsy, in an attempt to reduce the well-described sensory morbidity and neuroma formation. METHODS: Three patients with a suspected diagnosis of peripheral neuropathy underwent sural nerve biopsies to establish definitive diagnoses. A 10-mm segment of the sural nerve was resected with local anesthesia. After harvesting of the specimen, the proximal and distal nerve stumps were carefully mobilized and united with epineural suture techniques, under a surgical microscope. Sensory evaluations (assessing the presence of hypesthesia/dysesthesia or pain) of the lateral aspect of the foot, in regions designated Areas 1, 2, and 3, were performed before and 6 and 12 months after the biopsies. A visual analog scale was used for pain estimation. RESULTS: The biopsy material was sufficient for histopathological examinations in all cases, leading to conclusive diagnoses (vasculitis in two cases and amyloidosis in one case). The early post-biopsy hypesthesia, which was present for 4 to 8 weeks, improved to preoperative levels as early as 6 months after the nerve repair. Sensory evaluations performed at 6- and 12-month follow-up times demonstrated that none of the patients complained of pain at the biopsy site or distally in the area innervated by the sural nerve. Ultrasonography performed at the 12-month follow-up examination revealed normal sural nerve morphological features, with no neuroma formation, comparable to findings for the contralateral site. CONCLUSION: Microsurgical repair of the sural nerve after biopsy can eliminate or reduce sensory disturbances such as paraesthesia, hypesthesia, and dysesthesia distal to the biopsy site, in the distribution of the sensory innervation of the sural nerve, and can prevent painful neuroma formation. To our knowledge, this article is the first in the literature to report on microsurgical repair of the sural nerve after nerve biopsy. Decreased side effects suggest that this technique can become a standard procedure after sural nerve biopsy, which is commonly required to establish the diagnosis of various diseases, such as peripheral nerve pathological conditions, vasculitis, and amyloidosis. More cases should be analyzed, however, to explore the usefulness of the technique and the reliability of sural nerve biopsy samples in attempts to obtain conclusive diagnoses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early network oscillations and spindle bursts are typical patterns of spontaneous rhythmic activity in cortical networks of neonatal rodents in vivo and in vitro. The latter can also be triggered in vivo by stimulation of afferent inputs. The mechanisms underlying such oscillations undergo profound developmental changes in the first postnatal weeks. Their possible role in cortical development is postulated but not known in detail. We have studied spontaneous and evoked patterns of activity in organotypic cultures of slices from neonatal rat cortex grown on multielectrode arrays (MEAs) for extracellular single- and multi-unit recording. Episodes of spontaneous spike discharge oscillations at 7 - 25 Hz lasting for 0.6 - 3 seconds appeared in about half of these cultures spontaneously and could be triggered by electrical stimulation of few distinct electrodes. These oscillations usually covered only restricted areas of the slices. Besides oscillations, single population bursts that spread in a wavelike manner over the whole slice also appeared spontaneously and were triggered by electrical stimulation. In most but not all cultures, population bursts preceded the oscillations. Both population bursts and spike discharge oscillations required intact glutamatergic synaptic transmission since they were suppressed by the AMPA/kainate glutamate receptor antagonist CNQX. The NMDA antagonist d-APV suppressed the oscillations but not the population bursts, suggesting an involvement of NMDA receptors in the oscillations. These findings show that spindle burst like cortical rhythms are reproduced in organotypic cultures of neonatal cortex. The culture model thus allows investigating the role of such rhythms in cortical circuit formation. Supported by SNF grant No. 3100A0-107641/1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine deficiency in Parkinson's disease leads to numerous molecular changes in basal ganglia. However, the consequences of these changes on the motor cortex remain unclear. Here we show that the immunoreactivity of parvalbumin, which is expressed in GABAergic interneurons, increases in the primary motor cortex of parkinsonian rats. This increase can be reversed by a subsequent lesion of the subthalamic nucleus. These results suggest that dopamine deficiency induces reversible changes in GABAergic cortical cells, which might be linked with parkinsonian symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The right posterior parietal cortex (PPC) is critically involved in visual exploration behaviour, and damage to this area may lead to neglect of the left hemispace. We investigated whether neglect-like visual exploration behaviour could be induced in healthy subjects using theta burst repetitive transcranial magnetic stimulation (rTMS). To this end, one continuous train of theta burst rTMS was applied over the right PPC in 12 healthy subjects prior to a visual exploration task where colour photographs of real-life scenes were presented on a computer screen. In a control experiment, stimulation was also applied over the vertex. Eye movements were measured, and the distribution of visual fixations in the left and right halves of the screen was analysed. In comparison to the performance of 28 control subjects without stimulation, theta burst rTMS over the right PPC, but not the vertex, significantly decreased cumulative fixation duration in the left screen-half and significantly increased cumulative fixation duration in the right screen-half for a time period of 30 min. These results suggest that theta burst rTMS is a reliable method of inducing transient neglect-like visual exploration behaviour.