949 resultados para sensors and actuators
Resumo:
The development of the distributed information measurement and control system for optical spectral research of particle beam and plasma objects and the execution of laboratory works on Physics and Engineering Department of Petrozavodsk State University are described. At the hardware level the system is represented by a complex of the automated workplaces joined into computer network. The key element of the system is the communication server, which supports the multi-user mode and distributes resources among clients, monitors the system and provides secure access. Other system components are formed by equipment servers (CАМАC and GPIB servers, a server for the access to microcontrollers MCS-196 and others) and the client programs that carry out data acquisition, accumulation and processing and management of the course of the experiment as well. In this work the designed by the authors network interface is discussed. The interface provides the connection of measuring and executive devices to the distributed information measurement and control system via Ethernet. This interface allows controlling of experimental parameters by use of digital devices, monitoring of experiment parameters by polling of analog and digital sensors. The device firmware is written in assembler language and includes libraries for Ethernet-, IP-, TCP- и UDP-packets forming.
Resumo:
This paper briefly reviews CMOS image sensor technology and its utilization in security and medical applications. The role and future trends of image sensors in each of the applications are discussed. To provide the reader deeper understanding of the technology aspects the paper concentrates on the selected applications such as surveillance, biometrics, capsule endoscopy and artificial retina. The reasons for concentrating on these applications are due to their importance in our daily life and because they present leading-edge applications for imaging systems research and development. In addition, review of image sensors implementation in these applications allows the reader to investigate image sensor technology from the technical and from other views as well.
Resumo:
We demonstrate highly sensitive temperature and strain sensors based on an all-fiber Lyot filter structure, which is formed by concatenating two 45°-TFGs (tilted fiber gratings) with a PM fiber cavity. The experiment results show the all-fiber 45°-TFG Lyot filter has very high sensitivity to strain and temperature. The 45°-TFG Lyot filters of two different cavity lengths (18cm and 40 cm) have been evaluated for temperature sensing by heating a section of the cavity from 10°C to 50°C. The experiment results have shown remarkably high temperature sensitivities of 0.616nm/°C for 18cm and 0.31nm/°C for 40cm long cavity filter, respectively. The 18cm long cavity filter has been subjected to strain variations up to around 550μ ε and the filter has exhibited strain sensitivities of 0.02499nm/μ ε and 0.012nm/μ ε for two straining situations, where its cavity middle section of 18cm and 9cm were stretched, respectively. © 2012 SPIE.
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photo-inscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress and force sensitivity measurements are taken before and after annealing. Parameters such as annealing time and annealing temperature are investigated. The change of the fibre diameter due to water absorption and the annealing process is also considered. The results show that annealing the polymer optical fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor.
Resumo:
The purpose of this investigation was to develop and implement a general purpose VLSI (Very Large Scale Integration) Test Module based on a FPGA (Field Programmable Gate Array) system to verify the mechanical behavior and performance of MEM sensors, with associated corrective capabilities; and to make use of the evolving System-C, a new open-source HDL (Hardware Description Language), for the design of the FPGA functional units. System-C is becoming widely accepted as a platform for modeling, simulating and implementing systems consisting of both hardware and software components. In this investigation, a Dual-Axis Accelerometer (ADXL202E) and a Temperature Sensor (TMP03) were used for the test module verification. Results of the test module measurement were analyzed for repeatability and reliability, and then compared to the sensor datasheet. Further study ideas were identified based on the study and results analysis. ASIC (Application Specific Integrated Circuit) design concepts were also being pursued.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.