965 resultados para sensorimotor synchronization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensor networks have been an active research area in the past decade due to the variety of their applications. Many research studies have been conducted to solve the problems underlying the middleware services of sensor networks, such as self-deployment, self-localization, and synchronization. With the provided middleware services, sensor networks have grown into a mature technology to be used as a detection and surveillance paradigm for many real-world applications. The individual sensors are small in size. Thus, they can be deployed in areas with limited space to make unobstructed measurements in locations where the traditional centralized systems would have trouble to reach. However, there are a few physical limitations to sensor networks, which can prevent sensors from performing at their maximum potential. Individual sensors have limited power supply, the wireless band can get very cluttered when multiple sensors try to transmit at the same time. Furthermore, the individual sensors have limited communication range, so the network may not have a 1-hop communication topology and routing can be a problem in many cases. Carefully designed algorithms can alleviate the physical limitations of sensor networks, and allow them to be utilized to their full potential. Graphical models are an intuitive choice for designing sensor network algorithms. This thesis focuses on a classic application in sensor networks, detecting and tracking of targets. It develops feasible inference techniques for sensor networks using statistical graphical model inference, binary sensor detection, events isolation and dynamic clustering. The main strategy is to use only binary data for rough global inferences, and then dynamically form small scale clusters around the target for detailed computations. This framework is then extended to network topology manipulation, so that the framework developed can be applied to tracking in different network topology settings. Finally the system was tested in both simulation and real-world environments. The simulations were performed on various network topologies, from regularly distributed networks to randomly distributed networks. The results show that the algorithm performs well in randomly distributed networks, and hence requires minimum deployment effort. The experiments were carried out in both corridor and open space settings. A in-home falling detection system was simulated with real-world settings, it was setup with 30 bumblebee radars and 30 ultrasonic sensors driven by TI EZ430-RF2500 boards scanning a typical 800 sqft apartment. Bumblebee radars are calibrated to detect the falling of human body, and the two-tier tracking algorithm is used on the ultrasonic sensors to track the location of the elderly people.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motor-evoked potentials (MEPs) vary in size from one stimulus to the next. The objective of this study was to determine the cause and source of trial-to-trial MEP size variability. In two experiments involving 10 and 14 subjects, the variability of MEPs to cortical stimulation (cortical-MEPs) in abductor digiti minimi (ADM) and abductor hallucis (AH) was compared to those responses obtained using the triple stimulation technique (cortical-TST). The TST eliminates the effects of motor neuron (MN) response desynchronization and of repetitive MN discharges. Submaximal stimuli were used in both techniques. In six subjects, cortical-MEP variability was compared to that of brainstem-MEP and brainstem-TST. Variability was greater for MEPs than that for TST responses, by approximately one-third. The variability was the same for cortical- and brainstem-MEPs and was similar in ADM and AH. Variability concerned at least 10-15% of the MN pool innervating the target muscle. With the stimulation parameters used, repetitive MN discharges did not influence variability. For submaximal stimuli, approximately two-third of the observed MEP size variability is caused by the variable number of recruited alpha-MNs and approximately one-third by changing synchronization of MN discharges. The source of variability is most likely localized at the spinal segmental level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial tracking is one of the most challenging and important parts of Mixed Reality environments. Many applications, especially in the domain of Augmented Reality, rely on the fusion of several tracking systems in order to optimize the overall performance. While the topic of spatial tracking sensor fusion has already seen considerable interest, most results only deal with the integration of carefully arranged setups as opposed to dynamic sensor fusion setups. A crucial prerequisite for correct sensor fusion is the temporal alignment of the tracking data from several sensors. Tracking sensors are typically encountered in Mixed Reality applications, are generally not synchronized. We present a general method to calibrate the temporal offset between different sensors by the Time Delay Estimation method which can be used to perform on-line temporal calibration. By applying Time Delay Estimation on the tracking data, we show that the temporal offset between generic Mixed Reality spatial tracking sensors can be calibrated. To show the correctness and the feasibility of this approach, we have examined different variations of our method and evaluated various combinations of tracking sensors. We furthermore integrated this time synchronization method into our UBITRACK Mixed Reality tracking framework to provide facilities for calibration and real-time data alignment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored and refined the hypothesis that during a first episode of acute schizophrenia a disorganization of brain functioning is present. A novel EEG measure was introduced, Global Field Synchronization (GFS), that estimates functional connectivity of brain processes in different EEG frequency bands. The measure was applied to EEG's from 11 never-treated, first-episode, young patients with an acute, positive, schizophrenic symptomatology and from 19 controls, residing in Bern, Switzerland. In comparison to age- and sex- matched controls, patients had significantly decreased GFS in the theta EEG frequency band, indicating a loosened functional connectivity of processes in this frequency. The result was confirmed in an independent, comparable patient group from Osaka, Japan (9 patients and 9 controls), thus making a total of 20 analyzed patients. Previous EEG research in healthy, awake subjects indicated a positive correlation of theta activity with memory functions. Thus, our result suggests a loss of mutual interdependence of memory functions in patients with acute schizophrenia, which agrees well with previous reports of working memory dysfunction in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heifer development project was a five year project conducted on the site of the former Jackson County Farm north of Andrew, Iowa, for four years and on an area producer’s farm for the fifth year. Heifers arrived around December 1 each year and the average number of heifers each year was 43 with a low of 37 and high of 47. After a 30+ day warm-up period the heifers were put on a 112-day test from early January to late April. They were fed a shelled corn and legume-grass hay ration consisting of between 13% and 14% crude protein and a range of .44 to .58 megacal/pound of NEg over the five years. During the 112-day test heifers gained 1.86, 1.78, 1.5, 1.63 and 2.2 pounds per day, respectively, for years 1992 through 1996. The actual average breeding weight was less than the target weight in three years by 5, 12 and 22 pounds and exceeded the target weight in two year by 17 and 28 pounds. Estrus synchronization used a combination of MGA feeding and Lutalyse injection. Heifers were heat detected and bred 12 hours later for a three-day period. On the fourth day, all heifers not bred were mass inseminated. Heifers then ran with the cleanup bull for 58 days. The average synchronization response rate during the project was 79%. The overall pregnancy rates based on September pregnancy averaged 92%. The five year average total cost per head for heifer development was $286.18 or about $.85 per day. Feed and pasture costs averaged 61% of the total costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two synchronization protocols in lactating dairy and beef cows and in dairy heifers were tested for efficacy of breeding by artificial insemination (AI) with or without estrus detection. Controls received three prostaglandin F2a (PGF2a) injections 14 days apart before AI at observed estrus. Pregnancy rates were compared with animals on the Ovsynch protocol that combined gonadotropin releasing hormone (GnRH) and PGF2a treatments with a timed AI 16 to 20 hours after the second GnRH injection. The pregnancy rates were similar at synchronized ovulation to fixed-time AI in lactating cows, but not effective in heifers because of the lack of synchronization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods of heat detection were compared in the Mid- Crest Area Cattle Evaluation Program (MACEP) heifer development program in the 1998-breeding season. A total of 189 heifers from thirteen consignors entered the program on November 10, 1997. These heifers were condition scored, hip height measured, weighed, disposition scored, booster vaccinated, and treated for parasites at the time of arrival. Determination of the heifer’s mature weight was made and a target of 65% of their mature weight at breeding was established. The ration was designed to meet this goal. The heifers were kept in a dry lot until all heifers were AI bred once. The heifers were periodically weighed and condition scored to monitor their gains and the ration was adjusted as needed. The estrus synchronization program consisted of an oral progesterone analog for 14 days; 17 days after completion of the progesterone analog treatment a single injection of prostaglandin was given and the heifers were then estrus detected. Two concurrent methods of estrus detection were utilized: 1) Ovatec â electronic breeding probe (probe), 2) HeatWatchâ estrus detection system (HW), and 3) a combination of probe and HW. Probe readings were obtained each 12 hours and the heifers were continuously monitored for estrus activity using the HW system. The probe was used as the primary estrus detection method and the HW system was used as a back-up system. Those heifers that did not demonstrate any estrus signs prior to 96 hours post prostaglandin treatment were mass inseminated at 96 hours. Post AI breeding, 151 of the heifers were placed on pasture and ran with clean-up bulls for 60 days. The remaining heifers left the program after the AI breeding was completed. Pregnancy to the AI breeding was determined by ultrasound on June 29, 1998. Results from using both probe and HW were 60% pregnant by AI, probe alone was 32% pregnant by AI, and HW alone was 27% pregnant by AI. The result of mass insemination was 20% pregnant by AI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heifer development project took place the past four years on the site of the former Jackson County Farm north of Andrew, Iowa. Heifers arrived around December 1 with 38 heifers delivered for 1992, 44 for 1993, 46 for 1994, and 47 for 1995. After a 30+ day warm-up period, the heifers were put on a 112-day test from early January to late April. They were fed a shelled corn and legume-grass hay ration consisting of between 13% and 14% crude protein and .48, .58, .44, and .54 megacal/pound of NEg respectively for the years 1992 - 1995. During the 112-day test heifers gained 1.86, 1.78, 1.5, and 1.63 pounds per day respectively for years 1992 through 1995. The 1995 heifers averaged 853 pounds at breeding (22 pounds under target weight). This compares with previous years in which the breeding weight was less than target weight in two years by 5 and 12 pounds and exceeded the target weight in one year by 17 pounds. Estrus synchronization used a combination of MGA feeding and Lutalyse injection. Heifers were heatdetected and bred 12 hours later for a three-day period. On the fourth day, all heifers not bred were mass inseminated. Heifers then ran with the cleanup bull for 58 days. The synchronization response rate in 1995 was 83%, which compares with the three year previous average of 77%. The overall pregnancy rates based on September pregnancy exams were 94.6% in 1992, 93% in 1993, 91% in 1994, and 91.5% in 1995. Development costs for the 326 days in 1995 totaled $269.14 per heifer. This compares with the average of $286. 92 for the three previous years. The four-year average total cost per head for heifer development was $282.48, or about $.84 per day. Feed and pasture costs represented 58% of the total costs, or $.49 per day.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibrations, Posture, and the Stabilization of Gaze: An Experimental Study on Impedance Control R. KREDEL, A. GRIMM & E.-J. HOSSNER University of Bern, Switzerland Introduction Franklin and Wolpert (2011) identify impedance control, i.e., the competence to resist changes in position, velocity or acceleration caused by environmental disturbances, as one of five computational mechanisms which allow for skilled and fluent sen-sorimotor behavior. Accordingly, impedance control is of particular interest in situa-tions in which the motor task exhibits unpredictable components as it is the case in downhill biking or downhill skiing. In an experimental study, the question is asked whether impedance control, beyond its benefits for motor control, also helps to stabi-lize gaze what, in turn, may be essential for maintaining other control mechanisms (e.g., the internal modeling of future states) in an optimal range. Method In a 3x2x4 within-subject ANOVA design, 72 participants conducted three tests on visual acuity and contrast (Landolt / Grating and Vernier) in two different postures (standing vs. squat) on a platform vibrating at four different frequencies (ZEPTOR; 0 Hz, 4 Hz, 8 Hz, 12 Hz; no random noise; constant amplitude) in a counterbalanced or-der with 1-minute breaks in-between. In addition, perceived exertion (Borg) was rated by participants after each condition. Results For Landolt and Grating, significant main effects for posture and frequency are re-vealed, representing lower acuity/contrast thresholds for standing and for higher fre-quencies in general, as well as a significant interaction (p < .05), standing for in-creasing posture differences with increasing frequencies. Overall, performance could be maintained at the 0 Hz/standing level up to a frequency of 8 Hz, if bending of the knees was allowed. The fact that this result is not only due to exertion is proved by the Borg ratings showing significant main effects only, i.e., higher exertion scores for standing and for higher frequencies, but no significant interaction (p > .40). The same pattern, although not significant, is revealed for the Vernier test. Discussion Apparently, postures improving impedance control not only turn out to help to resist disturbances but also assist in stabilizing gaze in spite of these perturbations. Con-sequently, studying the interaction of these control mechanisms in complex unpre-dictable environments seems to be a fruitful field of research for the future. References Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72, 425-442.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract concepts like numbers or time are thought to be represented in the more concrete domain of space and the sensorimotor system. For example, thinking of past or future events has a physical manifestation in backward or forward body sway, respectively. In the present study, we investigated the reverse effect: can passive whole-body motion influence the processing of temporal information? Participants were asked to categorize verbal stimuli to the concepts future or past while they were displaced forward and backward (Experiment 1), or upward and downward (Experiment 2). The results showed that future related verbal stimuli were categorized faster during forward as compared to backward motion. This finding supports the view that temporal events are represented along a mental time line and that the sensorimotor system is linked to that representation. We showed that body motion is not just an epiphenomenon of temporal thoughts. Passive whole-body motion can influence higher-order temporal cognition.