999 resultados para selection devices
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.
Resumo:
As consumers demand more functionality) from their electronic devices and manufacturers supply the demand then electrical power and clock requirements tend to increase, however reassessing system architecture can fortunately lead to suitable counter reductions. To maintain low clock rates and therefore reduce electrical power, this paper presents a parallel convolutional coder for the transmit side in many wireless consumer devices. The coder accepts a parallel data input and directly computes punctured convolutional codes without the need for a separate puncturing operation while the coded bits are available at the output of the coder in a parallel fashion. Also as the computation is in parallel then the coder can be clocked at 7 times slower than the conventional shift-register based convolutional coder (using DVB 7/8 rate). The presented coder is directly relevant to the design of modern low-power consumer devices
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
The General Packet Radio Service (GPRS) was developed to allow packet data to be transported efficiently over an existing circuit switched radio network. The main applications for GPRS are in transporting IP datagram’s from the user’s mobile Internet browser to and from the Internet, or in telemetry equipment. A simple Error Detection and Correction (EDC) scheme to improve the GPRS Block Error Rate (BLER) performance is presented, particularly for coding scheme 4 (CS-4), however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel, improving throughput and the user’s application data rate. As GPRS requires intensive processing in the baseband, a viable hardware solution for a GPRS BLER co-processor is discussed that has been currently implemented in a Field Programmable Gate Array (FPGA) and presented in this paper.
Resumo:
A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.
Resumo:
Costs of resistance are widely assumed to be important in the evolution of parasite and pathogen defence in animals, but they have been demonstrated experimentally on very few occasions. Endoparasitoids are insects whose larvae develop inside the bodies of other insects where they defend themselves from attack by their hosts' immune systems (especially cellular encapsulation). Working with Drosophila melanogaster and its endoparasitoid Leptopilina boulardi, we selected for increased resistance in four replicate populations of flies. The percentage of flies surviving attack increased from about 0.5% to between 40% and 50% in five generations, revealing substantial additive genetic variation in resistance in the field population from which our culture was established. In comparison with four control lines, flies from selected lines suffered from lower larval survival under conditions of moderate to severe intraspecific competition.
Resumo:
An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosaphila-parasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotama at 15 degrees C, 20 degrees C, and 25 degrees C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L, boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure.
Resumo:
One of the major aims of BCI research is devoted to achieving faster and more efficient control of external devices. The identification of individual tap events in a motor imagery BCI is therefore a desirable goal. EEG is recorded from subjects performing and imagining finger taps with their left and right hands. A Differential Evolution based feature selection wrapper is used in order to identify optimal features in the spatial and frequency domains for tap identification. Channel-frequency band combinations are found which allow differentiation of tap vs. no-tap control conditions for executed and imagined taps. Left vs. right hand taps may also be differentiated with features found in this manner. A sliding time window is then used to accurately identify individual taps in the executed tap and imagined tap conditions. Highly statistically significant classification accuracies are achieved with time windows of 0.5 s and more allowing taps to be identified on a single trial basis.