928 resultados para second harmonic generation
Resumo:
"Australian Medical Liability is a comprehensive handbook focusing on medical liability in the context of the civil liability legislation across Australia. This thoroughly revised second edition provides a detailed and in depth commentary on the elements of medical liability caselaw and legislation."--Libraries Australia
Resumo:
It was widely anticipated that after the introduction of silicone hydrogel lenses, the risk of microbial keratitis would be lower than with hydrogel lenses because of the reduction in hypoxic effects on the corneal epithelium. Large-scale epidemiological studies have confirmed that the absolute and relative risk of microbial keratitis is unchanged with overnight use of silicone hydrogel materials. The key findings include the following: (1) The risk of infection with 30 nights of silicone hydrogel use is equivalent to 6 nights of hydrogel extended wear; (2) Occasional overnight lens use is associated with a greater risk than daily lens use; (3) The rate of vision loss due to corneal infection with silicone hydrogel contact lenses is similar to that seen in hydrogel lenses; (4) The spectrum of causative organisms is similar to that seen in hydrogel lenses, and the material type does not impact the corneal location of presumed microbial keratitis; and (5) Modifiable risk factors for infection include overnight lens use, the degree of exposure, failing to wash hands before lens handling, and storage case hygiene practice. The lack of change in the absolute risk of disease would suggest that exposure to large number of pathogenic organisms can overcome any advantages obtained from eliminating the hypoxic effects of contact lenses. Epidemiological studies remain important in the assessment of new materials and modalities. Consideration of an early adopter effect with studies involving new materials and modalities and further investigation of the impact of second-generation silicone hydrogel materials is warranted.
Resumo:
Background Breastfeeding self-efficacy (BFSE) supports breastfeeding initiation and duration. Challenges to breastfeeding may undermine BFSE, but second-line strategies including nipple shields, syringe, cup, supply line and bottle feeding may support breastfeeding until challenges are resolved. The primary aim of this study was to examine BFSE in a sample of women using second-line strategies for feeding healthy term infants in the first week postpartum. Methods A retrospective self-report study was conducted using the Breastfeeding Self-Efficacy Scale - Short Form (BSES-SF), demographic and infant feeding questionnaires. Breastfeeding women who gave birth to a singleton healthy term infant at one private metropolitan birthing facility in Australia from November 2008 to February 2009 returned anonymous questionnaires by mail. Results A total of 128 (73 multiparous, 55 primiparous) women participated in the study. The mean BSES-SF score was 51.18 (Standard deviation, SD: 12.48). The median BSES-SF score was 53. Of women using a second-line strategy, 16 exceeded the median, and 42 were below. Analyses using Kruskal-Wallis tests confirmed this difference was statistically significant (H = 21.569, p = 0.001). The rate of second-line strategy use was 48%. The four most commonly used second-line strategies were: bottles with regular teats (77%); syringe feeding (44%); bottles with wide teats (34%); and nipple shields (27%). Seven key challenges were identified that contributed to the decision to use second-line strategies, including: nipple pain (40%); unsettled infant (40%); insufficient milk supply (37%); fatigue (37%); night nursery care (25%); infant weight loss > 10% (24%); and maternal birth associated pain (20%). Skin-to-skin contact at birth was commonly reported (93%). At seven days postpartum 124 women (97%) were continuing to breastfeed. Conclusions The high rate of use of second-line strategies identified in this study and high rate of breastfeeding at day seven despite lower BFSE indicate that such practices should not be overlooked by health professionals. The design of this study does not enable determination of cause-effect relationships to identify factors which contribute to use of second-line strategies. Nevertheless, the significantly lower BSES-SF score of women using a second-line strategy highlights this group of women have particular needs that require attention.
Resumo:
In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.
Resumo:
This paper demonstrates power management and control of DERs in an autonomous MG. The paper focuses on the control and performance of converter-interfaced DERs in voltage controlled mode. Several case studies are considered for a MG based on the different types of loads supplied by the MG (i.e. balanced three-phase, unbalanced, single-phase and harmonic loads). DERs are controlled by adjusting the voltage magnitude and angle in their converter output through droop control, in a decentralized concept. Based on this control method, DERs can successfully share the total demand of the MG in the presence of any type of loads. This includes proper total power sharing, unbalanced power sharing as well as harmonic power sharing, depending on the load types. The efficacy of the proposed power control, sharing and management among DERs in a microgrid is validated through extensive simulation studies using PSCAD/EMTDC.
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.
Resumo:
This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.
Resumo:
Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell-cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells towards the ultimate aim of high throughput screening of anti-cancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).
Resumo:
Next Generation Sequencing (NGS) has revolutionised molecular biology, resulting in an explosion of data sets and an increasing role in clinical practice. Such applications necessarily require rapid identification of the organism as a prelude to annotation and further analysis. NGS data consist of a substantial number of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. Highly accurate results have been obtained for restricted sets using SVM classifiers, but such methods are difficult to parallelise and success depends on careful attention to feature selection. This work examines the problem at very large scale, using a mix of synthetic and real data with a view to determining the overall structure of the problem and the effectiveness of parallel ensembles of simpler classifiers (principally random forests) in addressing the challenges of large scale genomics.
Resumo:
Platelet-derived microparticles (PMPs) which are produced during platelet activation contribute to coagulation1 and bind to traumatized endothelium in an animal model2. Such endothelial injury occurs during percutaneous transluminal coronary angioplasty (PTCA), a procedure which restores the diameter of occluded coronary arteries using balloon inflations. However, re-occlusions subsequently develop in 20-25% of patients3, although this is limited by treatment with anti-platelet glycoprotein IIb/IIIa receptor drugs such as abciximab4. However, abciximab only partially decreases the need for revascularisation5, and therefore other mechanisms appear to be involved. As platelet activation occurs during PTCA, it is likely that PMPs may be produced and contribute to restenosis. This study population consisted of 113 PTCA patients, of whom 38 received abciximab. Paired peripheral arterial blood samples were obtained from the PTCA sheath: 1) following heparinisation (baseline); and 2) subsequent to all vessel manipulation (post-PTCA). Blood was prepared with an anti-CD61 (glycoprotein IIIa) fluorescence conjugated antibody to identify PMPs using flow cytometry, and PMP results expressed as a percentage of all CD61 events. The level of PMPs increased significantly from baseline following PTCA in the without abciximab group (paired t test, P=0.019). However, there was no significant change in the level of PMPs following PTCA in patients who received abciximab. Baseline clinical characteristics between patient groups were similar, although patients administered abciximab had more complex PTCA procedures, such as increased balloon inflation pressures (ANOVA, P=0.0219). In this study, we have clearly demonstrated that the level of CD61-positive PMPs increased during PTCA. This trend has been demonstrated previously, although a low sample size prevented statistical significance being attained6. The results of our work also demonstrate that there was no increase in PMPs after PTCA with abiciximab treatment. The increased PMPs may adhere to traumatized endothelium, contributing to re-occlusion of the arteries, but this remains to be determined. References: (1) Holme PA, Brosstad F, Solum NO. Blood Coagulation and Fibrinolysis. 1995;6:302-310. (2) Merten M, Pakala R, Thiagarajan P, Benedict CR. Circulation. 1999;99:2577-2582. (3) Califf RM. American Heart Journal.1995;130:680-684. (4) Coller BS, Scudder LE. Blood. 1985;66:1456-1459. (5) Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M, Sigmon K, Anderson KM, Lee KL, Willerson JT on behalf of the EPIC investigators. Lancet. 1994;343:881-886. (6) Scharf RE, Tomer A, Marzec UM, Teirstein PS, Ruggeri ZM, Harker LA. Arteriosclerosis and Thrombosis. 1992;12:1475-87.
Resumo:
This special issue of Networking Science focuses on Next Generation Network (NGN) that enables the deployment of access independent services over converged fixed and mobile networks. NGN is a packet-based network and uses the Internet protocol (IP) to transport the various types of traffic (voice, video, data and signalling). NGN facilitates easy adoption of distributed computing applications by providing high speed connectivity in a converged networked environment. It also makes end user devices and applications highly intelligent and efficient by empowering them with programmability and remote configuration options. However, there are a number of important challenges in provisioning next generation network technologies in a converged communication environment. Some preliminary challenges include those that relate to QoS, switching and routing, management and control, and security which must be addressed on an urgent or emergency basis. The consideration of architectural issues in the design and pro- vision of secure services for NGN deserves special attention and hence is the main theme of this special issue.