973 resultados para score test information matrix artificial regression
Resumo:
For predicting future volatility, empirical studies find mixed results regarding two issues: (1) whether model free implied volatility has more information content than Black-Scholes model-based implied volatility; (2) whether implied volatility outperforms historical volatilities. In this thesis, we address these two issues using the Canadian financial data. First, we examine the information content and forecasting power between VIXC - a model free implied volatility, and MVX - a model-based implied volatility. The GARCH in-sample test indicates that VIXC subsumes all information that is reflected in MVX. The out-of-sample examination indicates that VIXC is superior to MVX for predicting the next 1-, 5-, 10-, and 22-trading days' realized volatility. Second, we investigate the predictive power between VIXC and alternative volatility forecasts derived from historical index prices. We find that for time horizons lesser than 10-trading days, VIXC provides more accurate forecasts. However, for longer time horizons, the historical volatilities, particularly the random walk, provide better forecasts. We conclude that VIXC cannot incorporate all information contained in historical index prices for predicting future volatility.
Resumo:
To examine the association between sleep disorders, obesity status, and the risk of diabetes in adults, a total of 3668 individuals aged 40+ years fromtheNHANES 2009-2010 withoutmissing information on sleep-related questions,measurements related to diabetes, and BMI were included in this analysis. Subjects were categorized into three sleep groups based on two sleep questions: (a) no sleep problems; (b) sleep disturbance; and (c) sleep disorder. Diabetes was defined as having one of a diagnosis from a physician; an overnight fasting glucose > 125 mg/dL; Glycohemoglobin > 6.4%; or an oral glucose tolerance test > 199mg/dL. Overall, 19% of subjects were diabetics, 37% were obese, and 32% had either sleep disturbance or sleep disorder. Using multiple logistic regression models adjusting for covariates without including BMI, the odds ratios (OR, (95% CI)) of diabetes were 1.40 (1.06, 1.84) and 2.04 (1.40, 2.95) for those with sleep disturbance and with sleep disorder, respectively. When further adjusting for BMI, the ORs were similar for those with sleep disturbance 1.36 (1.06, 1.73) but greatly attenuated for those with sleep disorders (1.38 [0.95, 2.00]). In conclusion, the impact of sleep disorders on diabetes may be explained through the individuals’ obesity status.
Resumo:
This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).
Resumo:
In This Paper We Present and Implement an Econometric Test of Both Negative Semi-Definiteness of the Matrix of Compensated Price Effects and of the Negative Quasi-Definiteness of the Matrix of Uncompensated Price Effects. This Test Allows Us to Evaluate Two Alternative Characterizations of Aggregate Demand Systems: the First, That They Behave Like Individual Demand Fuctions, and the Second, That They Respect the Properties Implied by the Assumptions Proposed by Hidebrand (1983) Or Grandmont (1984).
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
[Support Institutions:] Department of Administration of Health, University of Montreal, Canada Public Health School of Fudan University, Shanghai, China
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
L’objectif de la présente étude était d’évaluer un test d’estérase leucocytaire (LE) pour le diagnostic de l’endométrite subclinique chez les vaches Holstein en période postpartum. Les tests effectués à partir d’échantillons provenant soit de l’endomètre (UtLE) ou du col utérin (CxLE) ont été comparés à la cytologie endométriale (CE). Par ailleurs, deux méthodes d’évaluation des lames ont été comparées. Deux cent quatre vingt-cinq vaches Holstein de 5 troupeaux laitiers commerciaux ont été évaluées entre 21 et 47 jours en lait (JEL). Soixante sept vaches ont été diagnostiquées avec une endométrite clinique suite à un examen transrectal et vaginoscopique et ont été exclues de l’étude. Deux cent dix-huit vaches ont eu des prélèvements pour la CE et le test LE. La fonction ovarienne a été déterminée à la palpation transrectale. La banque de données utilisée pour chacune des vaches a été effectuée à partir du logiciel DSA (Dossier de Santé Animale) laitier. Le pourcentage de neutrophiles était significativement corrélé avec les scores de LE utérin et cervical. L’activité de CxLE et UtLE diminuait significativement avec les JEL, mais n’était pas associée au risque de gestation à 90 JEL (n= 186). Le pourcentage de neutrophiles mesuré à la CE entre 32 et 47 JEL était associé significativement au risque de gestation à 90 JEL (n=94, P=0.04). Pour la même période, selon une analyse de survie, les vaches avec >2,6% de neutrophiles à la CE étaient définies comme étant atteintes d’une endométrite subclinique avec une prévalence de 56%. Les résultats indiquent que le test d’estérase utérin ou cervical a une bonne concordance avec le pourcentage de neutrophiles à la CE. Une endométrite subclinique diagnostiquée par cytologie endometriale entre 32 et 47 JEL est associée à une réduction du risque de gestation au premier service.
Resumo:
La douleur est une expérience perceptive comportant de nombreuses dimensions. Ces dimensions de douleur sont inter-reliées et recrutent des réseaux neuronaux qui traitent les informations correspondantes. L’élucidation de l'architecture fonctionnelle qui supporte les différents aspects perceptifs de l'expérience est donc une étape fondamentale pour notre compréhension du rôle fonctionnel des différentes régions de la matrice cérébrale de la douleur dans les circuits corticaux qui sous tendent l'expérience subjective de la douleur. Parmi les diverses régions du cerveau impliquées dans le traitement de l'information nociceptive, le cortex somatosensoriel primaire et secondaire (S1 et S2) sont les principales régions généralement associées au traitement de l'aspect sensori-discriminatif de la douleur. Toutefois, l'organisation fonctionnelle dans ces régions somato-sensorielles n’est pas complètement claire et relativement peu d'études ont examiné directement l'intégration de l'information entre les régions somatiques sensorielles. Ainsi, plusieurs questions demeurent concernant la relation hiérarchique entre S1 et S2, ainsi que le rôle fonctionnel des connexions inter-hémisphériques des régions somatiques sensorielles homologues. De même, le traitement en série ou en parallèle au sein du système somatosensoriel constitue un autre élément de questionnement qui nécessite un examen plus approfondi. Le but de la présente étude était de tester un certain nombre d'hypothèses sur la causalité dans les interactions fonctionnelle entre S1 et S2, alors que les sujets recevaient des chocs électriques douloureux. Nous avons mis en place une méthode de modélisation de la connectivité, qui utilise une description de causalité de la dynamique du système, afin d'étudier les interactions entre les sites d'activation définie par un ensemble de données provenant d'une étude d'imagerie fonctionnelle. Notre paradigme est constitué de 3 session expérimentales en utilisant des chocs électriques à trois différents niveaux d’intensité, soit modérément douloureux (niveau 3), soit légèrement douloureux (niveau 2), soit complètement non douloureux (niveau 1). Par conséquent, notre paradigme nous a permis d'étudier comment l'intensité du stimulus est codé dans notre réseau d'intérêt, et comment la connectivité des différentes régions est modulée dans les conditions de stimulation différentes. Nos résultats sont en faveur du mode sériel de traitement de l’information somatosensorielle nociceptive avec un apport prédominant de la voie thalamocorticale vers S1 controlatérale au site de stimulation. Nos résultats impliquent que l'information se propage de S1 controlatéral à travers notre réseau d'intérêt composé des cortex S1 bilatéraux et S2. Notre analyse indique que la connexion S1→S2 est renforcée par la douleur, ce qui suggère que S2 est plus élevé dans la hiérarchie du traitement de la douleur que S1, conformément aux conclusions précédentes neurophysiologiques et de magnétoencéphalographie. Enfin, notre analyse fournit des preuves de l'entrée de l'information somatosensorielle dans l'hémisphère controlatéral au côté de stimulation, avec des connexions inter-hémisphériques responsable du transfert de l'information à l'hémisphère ipsilatéral.
Resumo:
La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes.
Resumo:
La transformation de modèles consiste à transformer un modèle source en un modèle cible conformément à des méta-modèles source et cible. Nous distinguons deux types de transformations. La première est exogène où les méta-modèles source et cible représentent des formalismes différents et où tous les éléments du modèle source sont transformés. Quand elle concerne un même formalisme, la transformation est endogène. Ce type de transformation nécessite généralement deux étapes : l’identification des éléments du modèle source à transformer, puis la transformation de ces éléments. Dans le cadre de cette thèse, nous proposons trois principales contributions liées à ces problèmes de transformation. La première contribution est l’automatisation des transformations des modèles. Nous proposons de considérer le problème de transformation comme un problème d'optimisation combinatoire où un modèle cible peut être automatiquement généré à partir d'un nombre réduit d'exemples de transformations. Cette première contribution peut être appliquée aux transformations exogènes ou endogènes (après la détection des éléments à transformer). La deuxième contribution est liée à la transformation endogène où les éléments à transformer du modèle source doivent être détectés. Nous proposons une approche pour la détection des défauts de conception comme étape préalable au refactoring. Cette approche est inspirée du principe de la détection des virus par le système immunitaire humain, appelée sélection négative. L’idée consiste à utiliser de bonnes pratiques d’implémentation pour détecter les parties du code à risque. La troisième contribution vise à tester un mécanisme de transformation en utilisant une fonction oracle pour détecter les erreurs. Nous avons adapté le mécanisme de sélection négative qui consiste à considérer comme une erreur toute déviation entre les traces de transformation à évaluer et une base d’exemples contenant des traces de transformation de bonne qualité. La fonction oracle calcule cette dissimilarité et les erreurs sont ordonnées selon ce score. Les différentes contributions ont été évaluées sur d’importants projets et les résultats obtenus montrent leurs efficacités.
Resumo:
La présente recherche vise à mieux comprendre, dans le contexte universitaire béninois, s’il peut exister un lien qualitatif entre TIC et rendement académique afin de pouvoir mettre les TIC à contribution pour améliorer significativement les mauvais résultats des apprenants, notamment au premier cycle universitaire. Cette étude est tout particulièrement importante dans notre contexte où les TIC font de plus en plus leur apparition en pédagogie universitaire et où les étudiants recourent aux TIC dans leur pratique plus que les formateurs dans la leur. Le cadre de référence retenu pour la recherche est structuré autour des concepts de l’apprentissage assisté par les TIC, de motivation en éducation et de rendement académique. Pour atteindre notre objectif de recherche, nous avons opté pour une démarche mixte : quantitative et qualitative. Il s’agit d’une étude descriptive/explicative. Nous avons mené une enquête par questionnaires auprès de 156 étudiants et 15 enseignants et fait des entrevues avec 11 étudiants et 6 enseignants. Les principaux résultats sont présentés sous forme d’articles respectivement en ce qui a trait à l’impact des TIC sur la motivation et la réussite, aux usages des TIC les plus fréquemment rencontrés chez les apprenants, et à la place des TIC dans la pratique pédagogique des enseignants de la faculté de droit de l’Université d’Abomey-Calavi. Plus précisément, il ressort des résultats que la majorité des participants ont une perception en général positive du potentiel motivationnel des TIC pour l’apprentissage. Cependant, sur une cote maximale de 7 (correspond très fortement), la perception des répondants relativement à l’impact positif de l’utilisation des TIC sur le rendement académique tourne autour d’une cote moyenne de 4 (correspond assez). D’où, une perception en général mitigée du lien entre l’apprentissage assisté par les TIC et la réussite. Le croisement des résultats des données quantitatives avec ceux de l’analyse qualitative induit, sur ce point, une perception positive prononcée des rapports entre TIC et rendement. Les résultats montrent également que les usages des TIC les plus fréquents chez ces apprenants sont le courriel (en tête), suivi de la recherche et du traitement de texte, avec une fréquence moyenne d’ « une fois par semaine ». Tous ces constats n’accréditent pas véritablement un usage académique des TIC. Chez les enseignants, les résultats ont montré aussi qu’il n’y a pas encore de réelles applications des TIC en situation d’enseignement : ils font plutôt un usage personnel des TIC et pas encore véritablement pédagogique. La conséquence logique de ces résultats est qu’il n’existe pas encore un lien qualitatif direct entre TIC et rendement académique en contexte universitaire béninois.
Resumo:
Contexte: la survenue d’IRA chez les patients ayant subi un traumatisme est une problématique qui a été peu étudiée jusqu’à ce jour. La présence de cette atteinte rénale a été démontrée comme étant associée à un risque accru de morbidités et de mortalité chez les sujets atteints. Objectifs: identifier les facteurs prédictifs d’insuffisance rénale ou plus récemment appelée atteinte rénale dans cette population particulière et tenter de trouver des facteurs qui peuvent être mesurés dans les premières heures de la prise en charge du patient. Aussi, nous avons cherché à savoir si l’injection de produit de contraste est associée à un risque accru d’insuffisance rénale aiguë dans cette population. Méthodes et résultats: la recherche a eu lieu à l’Hôpital du Sacré-Coeur de Montréal, un centre de traumatologie tertiaire en milieu urbain. Nous avons utilisé le registre des patients hospitalisés en traumatologie dans notre centre hospitalier entre 2002 et mars 2007 de même que les banques de données de laboratoire et de radiologie pour obtenir les données sur la créatinine et les examens avec produits de contraste. Finalement, une revue de dossiers structurée fut conduite pour recueillir le reste de l’information requise. L’incidence d’IRA dans la population étudiée est estimée à environ 5 %. Une analyse cas témoins fut conduite pour identifier les facteurs prédictifs d’IRA. Quarante-neuf cas d’IRA diagnostiqués par le médecin traitant et 101 témoins sélectionnés au hasard ont été analysés. Les facteurs prédictifs suivants ont été identifiés à l’analyse univariée : la première valeur de créatinine obtenue (p<0,001), l’instabilité hémodynamique (p<0,001), les antécédents d’insuffisance rénale chronique tels que notés dans le dossier par le médecin traitant (p=0,009), une maladie cardiaque (p=0,007), une chirurgie dans les 48 premières heures suivant le traumatisme (p=0,053), le niveau de gravité du traumatisme (Injury Severity Score) (p=0,046) et l’injection de produit de contraste au cours des 48 heures suivant le trauma (p=0,077). Parmi ces facteurs, deux ont été identifiés comme prédicteurs indépendants d’IRA à l’analyse multivariée. Une des valeurs était la première valeur de créatinine obtenue RC = 6,17 (p<0,001, IC95 % 2,81 – 13,53) pour chaque augmentation de 0.5mg/dL de créatinine. L’autre facteur était la présence d’instabilité hémodynamique RC 11,61 (p<0,001, IC95 % 3,71 – 36,29). Conclusion: des informations obtenues tôt dans la prise en charge du patient permettent de prédire le risque d’IRA chez ces patients. L’administration de contraste (intraveineuse ou intra-artérielle) ne s’est pas avérée un facteur indépendant de prédiction d’insuffisance rénale aiguë dans cette population dans le modèle multivarié.