982 resultados para robust atomic distributed amorphous
Resumo:
The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.
Resumo:
Climate-G is a large scale distributed testbed devoted to climate change research. It is an unfunded effort started in 2008 and involving a wide community both in Europe and US. The testbed is an interdisciplinary effort involving partners from several institutions and joining expertise in the field of climate change and computational science. Its main goal is to allow scientists carrying out geographical and cross-institutional data discovery, access, analysis, visualization and sharing of climate data. It represents an attempt to address, in a real environment, challenging data and metadata management issues. This paper presents a complete overview about the Climate-G testbed highlighting the most important results that have been achieved since the beginning of this project.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data and a data warehouse. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular we look at two aspects, first how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories --- this is an important and challenging aspect of P-found because the data volumes involved are too large to be centralised. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling new scientific discoveries.
Resumo:
Collaborative mining of distributed data streams in a mobile computing environment is referred to as Pocket Data Mining PDM. Hoeffding trees techniques have been experimentally and analytically validated for data stream classification. In this paper, we have proposed, developed and evaluated the adoption of distributed Hoeffding trees for classifying streaming data in PDM applications. We have identified a realistic scenario in which different users equipped with smart mobile devices run a local Hoeffding tree classifier on a subset of the attributes. Thus, we have investigated the mining of vertically partitioned datasets with possible overlap of attributes, which is the more likely case. Our experimental results have validated the efficiency of our proposed model achieving promising accuracy for real deployment.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.
Resumo:
Reduced flexibility of low carbon generation could pose new challenges for future energy systems. Both demand response and distributed storage may have a role to play in supporting future system balancing. This paper reviews how these technically different, but functionally similar approaches compare and compete with one another. Household survey data is used to test the effectiveness of price signals to deliver demand responses for appliances with a high degree of agency. The underlying unit of storage for different demand response options is discussed, with particular focus on the ability to enhance demand side flexibility in the residential sector. We conclude that a broad range of options, with different modes of storage, may need to be considered, if residential demand flexibility is to be maximised.
Resumo:
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.
Resumo:
This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).